Skip to main content

In Vivo Assessments to Detect Antimalarial Resistance

  • Protocol
  • First Online:
Malaria Control and Elimination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2013))

Abstract

In vivo drug clinical trials are the gold standard for assessing the therapeutic efficacy of antimalarials. They must be conducted in a rigorous and standardized manner so that the resistance of antimalarial drugs can be compared both in time and in space. This chapter presents the methodology for conducting such clinical studies of antimalarials for the treatment of uncomplicated malaria and describes the logistical difficulties and limitations of this methodology. Finally it highlights the importance of such knowledge in preventing resistance, in prolonging the utility of existing antimalarial drugs, and in ensuring that all individuals and populations suffering from malaria get the right malaria treatment at the right time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Miller LH, Baruch DI, Marsh K et al (2002) The pathogenic basis of malaria. Nature 415:673–679

    Article  CAS  Google Scholar 

  2. Guerra CA, Howes RE, Patil AP et al (2010) The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl Trop Dis 4:e774

    Article  Google Scholar 

  3. Hay SI, Guerra CA, Gething PW et al (2009) A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med 6:e1000048

    Article  Google Scholar 

  4. World Health Organization (2017) World malaria report 2017. World Health Organization, Geneva

    Book  Google Scholar 

  5. DALYs GBD, Collaborators H (2017) Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390:1260–1344

    Article  Google Scholar 

  6. Ariey F, Witkowski B, Amaratunga C et al (2014) A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505:50–55

    Article  Google Scholar 

  7. Witkowski B, Amaratunga C, Khim N et al (2013) Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect Dis 13:1043–1049

    Article  CAS  Google Scholar 

  8. Witkowski B, Duru V, Khim N et al (2017) A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study. Lancet Infect Dis 17:174–183

    Article  CAS  Google Scholar 

  9. Duru V, Khim N, Leang R et al (2015) Plasmodium falciparum dihydroartemisinin-piperaquine failures in Cambodia are associated with mutant K13 parasites presenting high survival rates in novel piperaquine in vitro assays: retrospective and prospective investigations. BMC Med 13:305

    Article  Google Scholar 

  10. World Health Organization (2009) Methods for surveillance of antimalarial drug efficacy. World Health Organization, Geneva

    Google Scholar 

  11. White NJ (2011) The parasite clearance curve. Malar J 10:278

    Article  CAS  Google Scholar 

  12. O’Flaherty K, Maguire J, Simpson JA et al (2017) Immunity as a predictor of anti-malarial treatment failure: a systematic review. Malar J 16:158

    Article  Google Scholar 

  13. World Health Organization (2014) Severe malaria. Tropical Med Int Health 19:7–131

    Article  Google Scholar 

  14. Dalrymple U, Arambepola R, Gething PW et al (2018) How long do rapid diagnostic tests remain positive after anti-malarial treatment? Malar J 17:228

    Article  Google Scholar 

  15. Vafa Homann M, Emami SN, Yman V et al (2017) Detection of malaria parasites after treatment in travelers: A 12-months longitudinal study and statistical modelling analysis. EBioMedicine 25:66–72

    Article  Google Scholar 

  16. Imwong M, Stepniewska K, Tripura R et al (2016) Numerical distributions of parasite densities during asymptomatic malaria. J Infect Dis 213:1322–1329

    Article  CAS  Google Scholar 

  17. Imwong M, Woodrow CJ, Hendriksen IC et al (2015) Plasma concentration of parasite DNA as a measure of disease severity in falciparum malaria. J Infect Dis 211:1128–1133

    Article  CAS  Google Scholar 

  18. World Health Organization (2015) Microscopy for the detection, identification and quantification of malaria parasites on stained thick and thin blood films in research settings (version 1.0); procedure: methods manual. World Health Organization, Geneva

    Google Scholar 

  19. Dahal P, Simpson JA, Dorsey G et al (2017) Statistical methods to derive efficacy estimates of anti-malarials for uncomplicated Plasmodium falciparum malaria: pitfalls and challenges. Malar J 16:430

    Article  Google Scholar 

  20. World Health Organization (1996) Assessment of therapeutic efficacy of antimalarial drugs for uncomplicated falciparum malaria in areas with intense transmission. World Health Organization, Geneva

    Google Scholar 

  21. World Health Organization (2003) Assessment and monitoring of antimalarial drug efficacy for the treatment of uncomplicated falciparum malaria. World Health Organization, Geneva

    Google Scholar 

  22. World Health Organization (1965) Resistance of malaria parasites to drugs. Report of a WHO scientific group. World Health Organization, Geneva

    Google Scholar 

  23. World Health Organization (1967) Chemotherapy of malaria. Report of a WHO sientific group. World Health Organization, Geneva

    Google Scholar 

  24. Stepniewska K, Taylor WR, Mayxay M et al (2004) In vivo assessment of drug efficacy against Plasmodium falciparum malaria: duration of follow-up. Antimicrob Agents Chemother 48:4271–4280

    Article  CAS  Google Scholar 

  25. Stepniewska K, White NJ (2006) Some considerations in the design and interpretation of antimalarial drug trials in uncomplicated falciparum malaria. Malar J 5:127

    Google Scholar 

  26. White NJ (2002) The assessment of antimalarial drug efficacy. Trends Parasitol 18:458–464

    Article  CAS  Google Scholar 

  27. PCSG WWARN (2015) Baseline data of parasite clearance in patients with falciparum malaria treated with an artemisinin derivative: an individual patient data meta-analysis. Malar J 14:359

    Article  Google Scholar 

  28. Ashley EA, Pinoges L, Turyakira E et al (2008) Different methodological approaches to the assessment of in vivo efficacy of three artemisinin-based combination antimalarial treatments for the treatment of uncomplicated falciparum malaria in African children. Malar J 7:154

    Article  Google Scholar 

  29. Verret WJ, Dorsey G, Nosten F et al (2009) The effect of varying analytical methods on estimates of anti-malarial clinical efficacy. Malar J 8:77

    Article  Google Scholar 

  30. Guthmann JP, Pinoges L, Checchi F et al (2006) Methodological issues in the assessment of antimalarial drug treatment: analysis of 13 studies in eight African countries from 2001 to 2004. Antimicrob Agents Chemother 50:3734–3739

    Article  CAS  Google Scholar 

  31. Nosten F, White NJ (2007) Artemisinin-based combination treatment of falciparum malaria. Am J Trop Med Hyg 77:181–192

    Article  CAS  Google Scholar 

  32. Ashley EA, Dhorda M, Fairhurst RM et al (2014) Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371:411–423

    Article  Google Scholar 

  33. Dondorp AM, Nosten F, Yi P et al (2009) Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361:455–467

    Article  CAS  Google Scholar 

  34. Flegg JA, Guerin PJ, Nosten F et al (2013) Optimal sampling designs for estimation of Plasmodium falciparum clearance rates in patients treated with artemisinin derivatives. Malar J 12:411

    Article  Google Scholar 

  35. Flegg JA, Guerin PJ, White NJ et al (2011) Standardizing the measurement of parasite clearance in falciparum malaria: the parasite clearance estimator. Malar J 10:339

    Article  Google Scholar 

  36. WWARN AbCTABSG (2015) Clinical determinants of early parasitological response to ACTs in African patients with uncomplicated falciparum malaria: a literature review and meta-analysis of individual patient data. BMC Med 13:212

    Article  Google Scholar 

  37. World Health Organization (2008) Methods and techniques for clinical trials on antimalarial drug efficacy–genotyping to identify parasite populations: informal consultation organized by the Medicines for Malaria Venture and cosponsored by the World Health Organization, 29–31 May 2007, Amsterdam, The Netherlands. World Health Organization, Geneva

    Google Scholar 

  38. Juliano JJ, Taylor SM, Meshnick SR (2009) Polymerase chain reaction adjustment in antimalarial trials: molecular malarkey? J Infect Dis 200:5–7

    Article  Google Scholar 

  39. Messerli C, Hofmann NE, Beck HP et al (2017) Critical evaluation of molecular monitoring in malaria drug efficacy trials and pitfalls of length-polymorphic markers. Antimicrob Agents Chemother 61. https://doi.org/10.1128/AAC.01500-16

  40. Snounou G, Beck HP (1998) The use of PCR genotyping in the assessment of recrudescence or reinfection after antimalarial drug treatment. Parasitol Today 14:462–467

    Article  CAS  Google Scholar 

  41. Juliano JJ, Gadalla N, Sutherland CJ et al (2010) The perils of PCR: can we accurately ‘correct’ antimalarial trials? Trends Parasitol 26:119–124

    Article  CAS  Google Scholar 

  42. White MT, Karl S, Koepfli C et al (2018) Plasmodium vivax and Plasmodium falciparum infection dynamics: re-infections, recrudescences and relapses. Malar J 17:170

    Article  Google Scholar 

  43. Greenhouse B, Myrick A, Dokomajilar C et al (2006) Validation of microsatellite markers for use in genotyping polyclonal Plasmodium falciparum infections. Am J Trop Med Hyg 75:836–842

    Article  CAS  Google Scholar 

  44. Thanapongpichat S, McGready R, Luxemburger C et al (2013) Microsatellite genotyping of Plasmodium vivax infections and their relapses in pregnant and non-pregnant patients on the Thai-Myanmar border. Malar J 12:275

    Article  Google Scholar 

  45. Daniels R, Volkman SK, Milner DA et al (2008) A general SNP-based molecular barcode for Plasmodium falciparum identification and tracking. Malar J 7:223

    Article  Google Scholar 

  46. Lerch A, Koepfli C, Hofmann NE et al (2017) Development of amplicon deep sequencing markers and data analysis pipeline for genotyping multi-clonal malaria infections. BMC Genomics 18:864

    Article  Google Scholar 

  47. White NJ, Stepniewska K, Barnes K et al (2008) Simplified antimalarial therapeutic monitoring: using the day-7 drug level? Trends Parasitol 24:159–163

    Article  CAS  Google Scholar 

  48. World Health Organization (2011) Methods and techniques for assessing exposure to antimalarial drugs in clinical field studies. World Health Organization, Geneva

    Google Scholar 

  49. Phyo AP, Ashley EA, Anderson TJC et al (2016) Declining efficacy of Artemisinin combination therapy against P. falciparum malaria on the Thai-Myanmar border (2003-2013): The role of parasite genetic factors. Clin Infect Dis 63:784–791

    Article  CAS  Google Scholar 

  50. Tools for monitoring antimalarial drug efficacy [http://www.who.int/malaria/areas/drug_resistance/efficacy-monitoring-tools/en/]

  51. Malaria Clinical Trials Toolkit [http://www.wwarn.org/tools-resources/malaria-clinical-trials-toolkit]

  52. Adjuik MA, Allan R, WorldWide Antimalarial Resistance Network ASAQSG et al (2015) The effect of dosing strategies on the therapeutic efficacy of artesunate-amodiaquine for uncomplicated malaria: a meta-analysis of individual patient data. BMC Med 13:66

    Article  Google Scholar 

  53. WorldWide Antimalarial Resistance Network (2013) The effect of dosing regimens on the antimalarial efficacy of dihydroartemisinin-piperaquine: a pooled analysis of individual patient data. PLoS Med 10:e1001564

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Mavuto Mukaka for the advice and assistance in providing the sample size calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjen M. Dondorp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dhorda, M.J., Dondorp, A.M. (2019). In Vivo Assessments to Detect Antimalarial Resistance. In: Ariey, F., Gay, F., Ménard, R. (eds) Malaria Control and Elimination. Methods in Molecular Biology, vol 2013. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9550-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9550-9_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9549-3

  • Online ISBN: 978-1-4939-9550-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics