Skip to main content

Dynamic Radiolabeling of S-Palmitoylated Proteins

  • Protocol
  • First Online:
Protein Lipidation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2009))

Abstract

Proteins can be radiolabeled either during synthesis, typically using 35S-cysteine/methionine (35S-Cys/Met), or after synthesis, by adding a radiolabeled posttranslational modification. Here we describe how protein S-palmitoylation, and its dynamics, can be monitored by 3H-palmitate labeling and how the importance of S-palmitoylation in protein biogenesis and turnover can be investigated using 35S-Cys/Met pulse–chase metabolic labeling. Proteins frequently have multiple palmitoylation sites. The importance thereof on the design and interpretation of metabolic labeling experiments is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blaskovic S, Blanc M, van der GFG (2013) What does S-palmitoylation do to membrane proteins? FEBS J 280:2766–2774

    Article  CAS  Google Scholar 

  2. Chamberlain LH, Shipston MJ (2015) The physiology of protein S-acylation. Physiol Rev 95:341–376

    Article  CAS  Google Scholar 

  3. Fukata Y, Murakami T, Yokoi N et al (2016) Local palmitoylation cycles and specialized membrane domain organization. Curr Top Membr 77:97–141

    Article  CAS  Google Scholar 

  4. Gottlieb CD, Linder ME (2017) Structure and function of DHHC protein S-acyltransferases. Biochem Soc Trans 45:923–928

    Article  CAS  Google Scholar 

  5. Lin DTS, Conibear E (2015) ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization. elife 4:e11306

    Article  Google Scholar 

  6. Won SJ, Cheung See Kit M, Martin BR (2018) Protein depalmitoylases. Crit Rev Biochem Mol Biol 53:83–98

    Article  CAS  Google Scholar 

  7. Perrody E, Abrami L, Feldman M et al (2016) Ubiquitin-dependent folding of the Wnt signaling coreceptor LRP6. elife 5:e19083

    Article  Google Scholar 

  8. Daniotti JL, Pedro MP, Valdez Taubas J (2017) The role of S-acylation in protein trafficking. Traffic 18:699–710

    Article  CAS  Google Scholar 

  9. Abrami L, Dallavilla T, Sandoz PA et al (2017) Identification and dynamics of the human ZDHHC16-ZDHHC6 palmitoylation cascade. elife 6:e27826

    Article  Google Scholar 

  10. Dallavilla T, Abrami L, Sandoz PA et al (2016) Model-driven understanding of palmitoylation dynamics: regulated acylation of the endoplasmic reticulum chaperone calnexin. PLoS Comput Biol 12:e1004774

    Article  Google Scholar 

  11. Lakkaraju AK, Abrami L, Lemmin T et al (2012) Palmitoylated calnexin is a key component of the ribosome–translocon complex. EMBO J 31:1823–1835

    Article  CAS  Google Scholar 

  12. Forrester MT, Hess DT, Thompson JW et al (2011) Site-specific analysis of protein S-acylation by resin-assisted capture. J Lipid Res 52:393–398

    Article  CAS  Google Scholar 

  13. Hurst CH, Turnbull D, Plain F et al (2017) Maleimide scavenging enhances determination of protein S-palmitoylation state in acyl-exchange methods. BioTechniques 62:69–75

    Article  CAS  Google Scholar 

  14. Gao X, Hannoush RN (2017) A decade of click chemistry in protein palmitoylation: impact on discovery and new biology. Cell Chem Biol 25:236–246

    Article  Google Scholar 

  15. Hancock JF (1995) [24] Prenylation and palmitoylation analysis. In: Methods in enzymology. Elsevier, Amsterdam, pp 237–245

    Google Scholar 

  16. O’Brien PJ, Zatz M (1984) Acylation of bovine rhodopsin by [3H]palmitic acid. J Biol Chem 259:5054–5057

    PubMed  Google Scholar 

  17. Howie J, Reilly L, Fraser NJ et al (2014) Substrate recognition by the cell surface palmitoyl transferase DHHC5. Proc Natl Acad Sci 111:17534–17539

    Article  CAS  Google Scholar 

  18. Percher A, Ramakrishnan S, Thinon E et al (2016) Mass-tag labeling reveals site-specific and endogenous levels of protein S-fatty acylation. Proc Natl Acad Sci 113:4302–4307

    Article  CAS  Google Scholar 

  19. Yokoi N, Fukata Y, Sekiya A et al (2016) Identification of PSD-95 depalmitoylating enzymes. J Neurosci 36:6431–6444

    Article  CAS  Google Scholar 

  20. O’Dowd BF, Hnatowich M, Caron MG et al (1989) Palmitoylation of the human beta 2-adrenergic receptor. Mutation of Cys341 in the carboxyl tail leads to an uncoupled nonpalmitoylated form of the receptor. J Biol Chem 264:7564–7569

    PubMed  Google Scholar 

  21. Dekker FJ, Rocks O, Vartak N et al (2010) Small-molecule inhibition of APT1 affects Ras localization and signaling. Nat Chem Biol 6:449–456

    Article  CAS  Google Scholar 

  22. Won SJ, Davda D, Labby KJ et al (2016) Molecular mechanism for isoform-selective inhibition of acyl protein thioesterases 1 and 2 (APT1 and APT2). ACS Chem Biol 11:3374–3382

    Article  CAS  Google Scholar 

  23. Esposito AM, Kinzy TG (2014) In vivo [35 S]-methionine incorporation. In: Methods in enzymology. Elsevier, Amsterdam, pp 55–64

    Google Scholar 

  24. Davda D, El Azzouny MA, Tom CTMB et al (2013) Profiling targets of the irreversible palmitoylation inhibitor 2-bromopalmitate. ACS Chem Biol 8:1912–1917

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Maria-Eugenia Zaballa for her help in finalizing the manuscript. This work benefited from funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 340260—PalmERa. This work was also supported by grants from the Swiss National Science Foundation (to G.v.d.G), and the Swiss SystemsX.ch initiative evaluated by the Swiss National Science Foundation (LipidX) (to G.v.d.G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gisou van der Goot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Abrami, L., Denhardt-Eriksson, R.A., Hatzimanikatis, V., van der Goot, F.G. (2019). Dynamic Radiolabeling of S-Palmitoylated Proteins. In: Linder, M. (eds) Protein Lipidation. Methods in Molecular Biology, vol 2009. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9532-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9532-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9531-8

  • Online ISBN: 978-1-4939-9532-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics