Skip to main content

Quantitation of Neurotoxic Metabolites of the Kynurenine Pathway by Laser Desorption Ionization Mass Spectrometry (LDI-MS)

  • Protocol
  • First Online:
Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1996))

Abstract

The metabolites of the mammalian kynurenine (KYN) pathway are generated from a branch of tryptophan metabolic pathway. The latter generates 3-hydroxykynurenine (3-HK), kynurenic acid (KYNA), quinolinic acid (QUIN), and picolinic acid (PIC) which are all strongly neuroactive, often with dramatically contrasting functional outcomes. Whereas KYNA and PIC are neuroprotective, 3-HK and QUIN are potently neurotoxic and attributed in major neurodegenerative diseases like schizophrenia, Alzheimer’s disease, Huntington’s disease, bipolar disorder, and depression. It is increasingly evident that the ratio(s) between the neurotoxic and neuroprotective metabolites may help predict the manifestations of disease vs. health. Therefore high-throughput platforms for determining the relative levels of these kynurenine metabolites in biofluids offer considerable potential. Current analytical tools for studying KYN pathway include assays of branching enzymes, PCR, immunoanalysis, and LCMS. None of these offer high-throughput, cost-effective analyses suited for clinical or drug-screening applications. In this report a laser desorption ionization mass spectrometry (LDI-MS) method is described using SBA-15 mesoporous silica. The system allows fast, high-resolution quantitation of neurotoxic kynurenines using targeted metabolomics on conventional MALDI platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ciorba MA (2013) Kynurenine pathway metabolites: relevant to vitamin B-6 deficiency and beyond. Am J Clin Nutr 98(4):863–864. Epub 2013/08/30

    Article  CAS  Google Scholar 

  2. Bryleva EY, Brundin L (2017) Suicidality and activation of the Kynurenine pathway of tryptophan metabolism. Curr Top Behav Neurosci 31:269–284. Epub 2016/05/26

    Article  Google Scholar 

  3. Lovelace MD, Varney B, Sundaram G, Lennon MJ, Lim CK, Jacobs K et al (2017) Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. Neuropharmacology 112(Pt B):373–388. Epub 2016/03/21

    Article  CAS  Google Scholar 

  4. Stone TW, Darlington LG (2002) Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 1(8):609–620

    Article  CAS  Google Scholar 

  5. Malpass K (2011) Neurodegenerative disease: the kynurenine pathway—promising new targets and therapies for neurodegenerative disease. Nat Rev Neurol 7(8):417. Epub 2011/07/27

    Article  Google Scholar 

  6. Gupta NK, Thaker AI, Kanuri N, Riehl TE, Rowley CW, Stenson WF et al (2012) Serum analysis of tryptophan catabolism pathway: correlation with Crohn's disease activity. Inflamm Bowel Dis 18(7):1214–1220. Epub 2011/08/09

    Article  Google Scholar 

  7. O'Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277:32–48. Epub 2014/08/01

    Article  CAS  Google Scholar 

  8. Adams S, Braidy N, Bessede A, Brew BJ, Grant R, Teo C et al (2012) The kynurenine pathway in brain tumor pathogenesis. Cancer Res 72(22):5649–5657. Epub 2012/11/13

    Article  CAS  Google Scholar 

  9. Woodberry T, Loughland JR, Minigo G, Burel JG, Amante FH, Piera KA et al (2017) Early immune regulatory changes in a primary controlled human Plasmodium vivax infection: CD1c(+) myeloid dendritic cell maturation arrest, induction of the Kynurenine pathway, and regulatory T cell activation. Infect Immun 85(6):e00986. Epub 2017/03/23

    Article  CAS  Google Scholar 

  10. Midttun O, Ulvik A, Ringdal Pedersen E, Ebbing M, Bleie O, Schartum-Hansen H et al (2011) Low plasma vitamin B-6 status affects metabolism through the kynurenine pathway in cardiovascular patients with systemic inflammation. J Nutr 141(4):611–617. Epub 2011/02/12

    Article  CAS  Google Scholar 

  11. Choi JM, Park WS, Song KY, Lee HJ, Jung BH (2016) Development of simultaneous analysis of tryptophan metabolites in serum and gastric juice—an investigation towards establishing a biomarker test for gastric cancer diagnosis. Biomed Chromatogr 30(12):1963–1974. Epub 2016/05/31

    Article  CAS  Google Scholar 

  12. Zhai L, Dey M, Lauing KL, Gritsina G, Kaur R, Lukas RV et al (2015) The kynurenine to tryptophan ratio as a prognostic tool for glioblastoma patients enrolling in immunotherapy. J Clin Neurosci 22(12):1964–1968. Epub 2015/08/19

    Article  CAS  Google Scholar 

  13. Medana IM, Day NP, Salahifar-Sabet H, Stocker R, Smythe G, Bwanaisa L et al (2003) Metabolites of the kynurenine pathway of tryptophan metabolism in the cerebrospinal fluid of Malawian children with malaria. J Infect Dis 188(6):844–849. Epub 2003/09/10

    Article  CAS  Google Scholar 

  14. Meier MA, Ottiger M, Vogeli A, Steuer C, Bernasconi L, Thomann R et al (2017) Activation of the tryptophan/serotonin pathway is associated with severity and predicts outcomes in pneumonia: results of a long-term cohort study. Clin Chem Lab Med 55(7):1060–1069. Epub 2017/01/12

    Article  CAS  Google Scholar 

  15. Chiappelli J, Notarangelo FM, Pocivavsek A, Thomas MAR, Rowland LM, Schwarcz R et al (2018) Influence of plasma cytokines on kynurenine and kynurenic acid in schizophrenia. Neuropsychopharmacology 43(8):1675–1680. Epub 2018/03/10

    Article  CAS  Google Scholar 

  16. Shibata K, Fukuwatari T (2014) Large amounts of Picolinic acid are lethal but small amounts increase the conversion of tryptophan-nicotinamide in rats. J Nutr Sci Vitaminol 60(5):334–339

    Article  CAS  Google Scholar 

  17. Birner A, Platzer M, Bengesser SA, Dalkner N, Fellendorf FT, Queissner R et al (2017) Increased breakdown of kynurenine towards its neurotoxic branch in bipolar disorder. PLoS One 12(2):e0172699. Epub 2017/02/28

    Article  Google Scholar 

  18. Schwarz MJ, Guillemin GJ, Teipel SJ, Buerger K, Hampel H (2013) Increased 3-hydroxykynurenine serum concentrations differentiate Alzheimer's disease patients from controls. Eur Arch Psychiatry Clin Neurosci 263(4):345–352. Epub 2012/11/30

    Article  Google Scholar 

  19. Maddison DC, Giorgini F (2015) The kynurenine pathway and neurodegenerative disease. Semin Cell Dev Biol 40:134–141. Epub 2015/03/17

    Article  CAS  Google Scholar 

  20. Stone TW (2000) Development and therapeutic potential of kynurenic acid and kynurenine derivatives for neuroprotection. Trends Pharmacol Sci 21(4):149–154. Epub 2000/03/31

    Article  CAS  Google Scholar 

  21. Bryleva EY, Brundin L (2017) Kynurenine pathway metabolites and suicidality. Neuropharmacology 112(Pt B):324–330. Epub 2016/01/29

    Article  CAS  Google Scholar 

  22. Du TT, Cui T, Qiu HM, Wang NR, Huang D, Jiang XH (2018) Simultaneous determination of tryptophan, kynurenine, kynurenic acid and two monoamines in rat plasma by HPLC-ECD/DAD. J Pharm Biomed Anal 158:8–14. Epub 2018/05/31

    Article  CAS  Google Scholar 

  23. Zhao J, Gao P, Zhu D (2010) Optimization of Zn2+-containing mobile phase for simultaneous determination of kynurenine, kynurenic acid and tryptophan in human plasma by high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 878(5-6):603–608. Epub 2010/01/28

    Article  CAS  Google Scholar 

  24. Tong Q, Song J, Yang G, Fan L, Xiong W, Fang J (2018) Simultaneous determination of tryptophan, kynurenine, kynurenic acid, xanthurenic acid and 5-hydroxytryptamine in human plasma by LC-MS/MS and its application to acute myocardial infarction monitoring. Biomed Chromatogr 32(4):e4156. Epub 2017/12/02

    Article  Google Scholar 

  25. Fuertig R, Ceci A, Camus SM, Bezard E, Luippold AH, Hengerer B (2016) LC-MS/MS-based quantification of kynurenine metabolites, tryptophan, monoamines and neopterin in plasma, cerebrospinal fluid and brain. Bioanalysis 8(18):1903–1917. Epub 2016/08/16

    Article  CAS  Google Scholar 

  26. Hu LJ, Li XF, Hu JQ, Ni XJ, Lu HY, Wang JJ et al (2017) A simple HPLC-MS/MS method for determination of tryptophan, Kynurenine and Kynurenic acid in human serum and its potential for monitoring antidepressant therapy. J Anal Toxicol 41(1):37–44. Epub 2016/09/04

    Article  CAS  Google Scholar 

  27. Nilsson LK, Linderholm KR, Engberg G, Paulson L, Blennow K, Lindstrom LH et al (2005) Elevated levels of kynurenic acid in the cerebrospinal fluid of male patients with schizophrenia. Schizophr Res 80(2-3):315–322. Epub 2005/08/30

    Article  CAS  Google Scholar 

  28. Opota O, Prod'hom G, Greub G (2017) Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. In: MALDI-TOF and tandem MS for clinical microbiology. John Wiley & Sons Ltd, Hoboken, pp 55–92

    Chapter  Google Scholar 

  29. Wei L, Cai Y, Yang L, Zhang Y, Lu H (2018) Duplex stable isotope labeling (DuSIL) for simultaneous quantitation and distinction of Sialylated and neutral N-Glycans by MALDI-MS. Anal Chem 90(17):10442–10449. Epub 2018/08/10

    Article  CAS  Google Scholar 

  30. Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4(10):828–833. Epub 2007/09/29

    Article  CAS  Google Scholar 

  31. Picca RA, Calvano CD, Cioffi N, Palmisano F (2017) Mechanisms of Nanophase-induced desorption in LDI-MS. a short review. Nano 7(4):E75. Epub 2017/04/04

    Google Scholar 

  32. Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306(5695):471–473. Epub 2004/10/16

    Article  CAS  Google Scholar 

  33. Guerreiro TM, de Oliveira DN, Ferreira MS, Catharino RR (2014) High-throughput analysis by SP-LDI-MS for fast identification of adulterations in commercial balsamic vinegars. Anal Chim Acta 838:86–92. Epub 2014/07/30

    Article  CAS  Google Scholar 

  34. Wei J, Buriak JM, Siuzdak G (1999) Desorption-ionization mass spectrometry on porous silicon. Nature 399(6733):243–246. Epub 1999/06/03

    Article  CAS  Google Scholar 

  35. Vaidyanathan S, Jones D, Broadhurst DI, Ellis J, Jenkins T, Dunn WB et al (2005) A laser desorption ionisation mass spectrometry approach for high throughput metabolomics. Metabolomics 1(3):243–250

    Article  CAS  Google Scholar 

  36. Fagerer SR, Nielsen S, Ibanez A, Zenobi R (2013) Matrix-assisted laser desorption/ionization matrices for negative mode metabolomics. Eur J Mass Spectrom 19(1):39–47

    Article  CAS  Google Scholar 

  37. Ghosh D, Dhaware D, Panchagnula V (2016) Selective detection and analysis of small molecules. EP2676287B1

    Google Scholar 

  38. Guidance for industry: bioanalytical method validation, vol 2015 (2001). US Department of Health and Human Services. Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CV).

    Google Scholar 

  39. Moller M, Du Preez JL, Harvey BH (2012) Development and validation of a single analytical method for the determination of tryptophan, and its kynurenine metabolites in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci 898:121–129. Epub 2012/05/23

    Article  Google Scholar 

  40. Tang K, Taranenko NI, Allman SL, Chen CH, Chang LY, Jacobson KB (1994) Picolinic-acid as a matrix for laser mass-spectrometry of nucleic-acids and proteins. Rapid Commun Mass Spectrom 8(9):673–677

    Article  CAS  Google Scholar 

  41. Wilson TJ, Thomsen KK, Petersen BO, Duus JO, Oliver RP (2003) Detection of 3-hydroxykynurenine in a plant pathogenic fungus. Biochem J 371(Pt 3):783–788. Epub 2003/01/31

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding from the Department of Science and Technology (DST-PURSE) and grants from the University Grants Commission (UGC-SAP), Government of India, for this program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipankar Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lahiri, P., Dhaware, D., Singh, A., Panchagnula, V., Ghosh, D. (2019). Quantitation of Neurotoxic Metabolites of the Kynurenine Pathway by Laser Desorption Ionization Mass Spectrometry (LDI-MS). In: Bhattacharya, S. (eds) Metabolomics. Methods in Molecular Biology, vol 1996. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9488-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9488-5_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9487-8

  • Online ISBN: 978-1-4939-9488-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics