Skip to main content

Morphological Analysis of Leaf Epidermis Pavement Cells with PaCeQuant

  • Protocol
  • First Online:
Plant Cell Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1992))

Abstract

Morphological analysis of cell shapes requires segmentation of cell contours from input images and subsequent extraction of meaningful shape descriptors that provide the basis for qualitative and quantitative assessment of shape characteristics. Here, we describe the publicly available ImageJ plugin PaCeQuant and its associated R package PaCeQuantAna, which provides a pipeline for fully automatic segmentation, feature extraction, statistical analysis, and graphical visualization of cell shape properties. PaCeQuant is specifically well suited for analysis of jigsaw puzzle-like leaf epidermis pavement cells from 2D input images and supports the quantification of global, contour-based, skeleton-based, and pavement cell-specific shape descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tsukaya H (2013) Leaf development. Arabidopsis Book 11:e0163

    Article  Google Scholar 

  2. Tsukaya H (1995) Developmental genetics of leaf morphogenesis in dicotyledonous plants. J Plant Res 108:407–416

    Article  Google Scholar 

  3. Glover BJ (2000) Differentiation in plant epidermal cells. J Exp Bot 51:497–505

    Article  CAS  Google Scholar 

  4. Qian PP, Hou SW, Guo GQ (2009) Molecular mechanisms controlling pavement cell shape in Arabidopsis leaves. Plant Cell Rep 28:1147–1157

    Article  CAS  Google Scholar 

  5. Guimil S, Dunand C (2007) Cell growth and differentiation in Arabidopsis epidermal cells. J Exp Bot 58:3829–3840

    Article  CAS  Google Scholar 

  6. Jacques E, Verbelen JP, Vissenberg K (2014) Review on shape formation in epidermal pavement cells of the Arabidopsis leaf. Funct Plant Biol 41:914–921

    Article  Google Scholar 

  7. Armour WJ, Barton DA, Law AM, Overall RL (2015) Differential growth in periclinal and anticlinal walls during lobe formation in Arabidopsis cotyledon pavement cells. Plant Cell 27:2484–2500

    Article  CAS  Google Scholar 

  8. Fu Y, Gu Y, Zheng ZL, Wasteneys G, Yang ZB (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120:687–700

    Article  CAS  Google Scholar 

  9. Kotzer AM, Wasteneys GO (2006) Mechanisms behind the puzzle: microtubule-microfilament cross-talk in pavement cell formation. Can J Bot 84:594–603

    Article  CAS  Google Scholar 

  10. Zhang CH, Halsey LE, Szymanski DB (2011) The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells. BMC Plant Biol 11:27

    Article  Google Scholar 

  11. Ivakov A, Persson S (2013) Plant cell shape: modulators and measurements. Front Plant Sci 4:439

    Article  Google Scholar 

  12. Gao Y, Zhang Y, Zhang D, Dai X, Estelle M et al (2015) Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci U S A 112:2275–2280

    Article  CAS  Google Scholar 

  13. Li S, Blanchoin L, Yang Z, Lord EM (2003) The putative Arabidopsis Arp2/3 complex controls leaf cell morphogenesis. Plant Physiol 132:2034–2044

    Article  CAS  Google Scholar 

  14. Bannigan A, Baskin TI (2005) Directional cell expansion—turning toward actin. Curr Opin Plant Biol 8:619–624

    Article  CAS  Google Scholar 

  15. Xu TD, Wen MZ, Nagawa S, Fu Y, Chen JG et al (2010) Cell surface- and Rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143:99–110

    Article  CAS  Google Scholar 

  16. Wu TC, Belteton S, Pack J, Szymanski DB, Umulis D (2016) LobeFinder: a convex hull-based method for quantitative boundary analyses of lobed plant cells. Plant Physiol 171:2331–2342

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sanchez-Corrales YE, Hartley M, van Rooij J, Maree AFM, Grieneisen VA (2018) Morphometrics of complex cell shapes: lobe contribution elliptic Fourier analysis (LOCO-EFA). Development 145:dev156778

    Article  Google Scholar 

  18. Möller B, Poeschl Y, Plötner R, Bürstenbinder K (2017) PaCeQuant: A tool for high-throughput quantification of pavement cell shape characteristics. Plant Physiol 175:998–1017

    Article  Google Scholar 

  19. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  20. Vanhaeren H, Gonzales NR, Inzé D (2015) A journey through a leaf: Phenomics analysis of leaf growth in Arabidopsis thaliana. Arabidopsis Book 13:e0181

    Article  Google Scholar 

  21. Mitra D, Kumari P, Quegwer J, Klemm S, Möller B et al (2018) Microtubule-associated protein IQ67 DOMAIN5 regulates interdigitation of leaf pavement cells in Arabidopsis thaliana. J Exp Bot ery39522. https://doi.org/10.1101/268466

  22. Liang H, Zhang Y, Martinez P, Rasmussen C, Xu T et al (2018) The microtubule-associated protein IQ67 DOMAIN5 modulates microtubule dynamics and pavement cell shape. Plant Physiol 177:1555–1568

    CAS  PubMed  Google Scholar 

  23. Möller B, Glaß M, Misiak D, Posch S (2016) MiToBo - A toolbox for image processing and analysis. J Open Res Softw 4:e17

    Article  Google Scholar 

  24. Wu HM, Hazak O, Cheung AY, Yalovsky S (2011) RAC/ROP GTPases and auxin signaling. Plant Cell 23:1208–1218

    Article  CAS  Google Scholar 

  25. Guo X, Qin Q, Yan J, Niu Y, Huang B et al (2015) TYPE-ONE PROTEIN PHOSPHATASE4 regulates pavement cell interdigitation by modulating PIN-FORMED1 polarity and trafficking in Arabidopsis. Plant Physiol 167:1058–1075

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (FZT 118, working group BIU, iDiv) and by IPB core funding (Leibniz Association) from the Federal Republic of Germany and the state of Saxony-Anhalt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Bürstenbinder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Möller, B., Poeschl, Y., Klemm, S., Bürstenbinder, K. (2019). Morphological Analysis of Leaf Epidermis Pavement Cells with PaCeQuant. In: Cvrčková, F., Žárský, V. (eds) Plant Cell Morphogenesis. Methods in Molecular Biology, vol 1992. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9469-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9469-4_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9468-7

  • Online ISBN: 978-1-4939-9469-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics