Skip to main content

Kinetic Analysis of Phagosomal ROS Generation

  • Protocol
  • First Online:
NADPH Oxidases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1982))

Abstract

Phagosomal ROS generation is critical for our immune defense against microbial infections. Quantitative assessment of phagosomal ROS production is required to understand the complex relationship between the phagocyte and the microbe, in particular for pathogens that resist phagosomal destruction. ROS detection is difficult due to the transient nature of the reactive species and their multiple interactions with the environment. Direct labeling of phagocytic prey with a ROS-sensitive dye allows to target the dye into the phagosome and to follow the kinetics of phagosomal ROS production on a single phagosome base. Here we describe the basic labeling procedure, the quality assessment, and the imaging technique to achieve this kinetic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dupre-Crochet S, Erard M, Nusse O (2013) ROS production in phagocytes: why, when, and where? J Leukoc Biol 94:657–670

    Article  CAS  Google Scholar 

  2. Nauseef WM (2008) Biological roles for the NOX family NADPH oxidases. J Biol Chem 283:16961–16965

    Article  CAS  Google Scholar 

  3. O’Neill S, Brault J, Stasia MJ, Knaus UG (2015) Genetic disorders coupled to ROS deficiency. Redox Biol 6:135–156

    Article  Google Scholar 

  4. Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776

    Article  CAS  Google Scholar 

  5. Seider K, Heyken A, Lüttich A, Miramón P, Hube B (2010) Interaction of pathogenic yeasts with phagocytes: survival, persistence and escape. Curr Opin Microbiol 13:392–400

    Article  CAS  Google Scholar 

  6. Nault L, Bouchab L, Dupré-Crochet S, Nüsse O, Erard M (2016) Environmental effects on ROS-detection - learning from the phagosome. Antioxid Redox Signal 25:564–576

    Article  CAS  Google Scholar 

  7. Tlili A, Dupré-Crochet S, Erard M, Nüße O (2011) Kinetic analysis of phagosomal production of reactive oxygen species. Free Radic Biol Med 50:438–447

    Article  CAS  Google Scholar 

  8. Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 43:995–1022

    Article  CAS  Google Scholar 

  9. Dewitt S, Laffafian I, Hallett MB (2003) Phagosomal oxidative activity during beta2 integrin (CR3)-mediated phagocytosis by neutrophils is triggered by a non-restricted Ca2+ signal: Ca2+ controls time not space. J Cell Sci 116:2857–2865

    Article  CAS  Google Scholar 

  10. Tlili A, Erard M, Faure MC, Baudin X, Piolot T, Dupre-Crochet S, Nusse O (2012) Stable accumulation of p67(phox) at the phagosomal membrane and ROS production within the phagosome. J Leukoc Biol 91:83–95

    Article  CAS  Google Scholar 

  11. Song ZM, Bouchab L, Hudik E, Le Bars R, Nüsse O, Dupré-Crochet S (2017) Phosphoinositol 3-phosphate acts as a timer for reactive oxygen species production in the phagosome. J Leukoc Biol 101:1155–1168

    Article  CAS  Google Scholar 

  12. Bernardo J, Long HJ, Simons ER (2010) Initial cytoplasmic and phagosomal consequences of human neutrophil exposure to Staphylococcus epidermidis. Cytom Part A 77A:243–252

    CAS  Google Scholar 

  13. Russell DG, VanderVen BC, Glennie S, Mwandumba H, Heyderman RS (2009) The macrophage marches on its phagosome: dynamic assays of phagosome function. Nat Rev Immunol 9:594–U84

    Article  CAS  Google Scholar 

  14. Vanderven BC, Yates RM, Russell DG (2009) Intraphagosomal measurement of the magnitude and duration of the oxidative burst. Traffic 10:372–378

    Article  CAS  Google Scholar 

  15. Kamen LA, Levinsohn J, Cadwallader A, Tridandapani S, Swanson JA (2008) SHIP-A increases early oxidative burst and regulates phagosome maturation in macrophages. J Immunol 180:7497–7505

    Article  CAS  Google Scholar 

  16. Chen X, Zhong Z, Xu Z, Chen L, Wang Y (2010) 2′,7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy. Free Radic Res 44:587–604

    Article  CAS  Google Scholar 

  17. Kundu K, Knight SF, Willett N, Lee S, Taylor WR, Murthy N (2009) Hydrocyanines: a class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo. Angew Chemie Int Ed Engl 48:299–303

    Article  CAS  Google Scholar 

  18. Erard M, Dupre-Crochet S, Nusse O (2018) Biosensors for spatiotemporal detection of reactive oxygen species in cells and tissues. Am J Physiol Integr Comp Physiol 314(5):R667–R683. https://doi.org/10.1152/ajpregu.00140.2017

    Article  CAS  Google Scholar 

  19. Schwarzlander M, Dick TP, Meyer AJ, Morgan B (2016) Dissecting redox biology using fluorescent protein sensors. Antioxid Redox Signal 24:680–712

    Article  Google Scholar 

  20. Seider K, Brunke S, Schild L, Jablonowski N, Wilson D, Majer O, Barz D, Haas A, Kuchler K, Schaller M, Hube B (2011) The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. J Immunol 187:3072–3086

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the FRM (Foundation for Medical Research, DCM20121225747). We wish to thank our past colleagues who have contributed to this method and Elodie Hudik for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Nüβe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dupré-Crochet, S., Erard, M., Nüβe, O. (2019). Kinetic Analysis of Phagosomal ROS Generation. In: Knaus, U., Leto, T. (eds) NADPH Oxidases. Methods in Molecular Biology, vol 1982. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9424-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9424-3_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9423-6

  • Online ISBN: 978-1-4939-9424-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics