Skip to main content

The Neurosphere Assay as an In Vitro Method for Developmental Neurotoxicity (DNT) Evaluation

  • Protocol
  • First Online:
Cell Culture Techniques

Part of the book series: Neuromethods ((NM,volume 145))

Abstract

The human developing central nervous system is more vulnerable to the adverse effects of chemical agents than the adult brain. At present, due to the lack of available data on human neurodevelopmental toxicants, there is an urgent need for testing and subsequently regulating chemicals for their potential to interfere with nervous system development. Alternative testing strategies might fill that gap as they allow fast and resource-efficient compound screenings for a variety of neurodevelopmental endpoints. Nervous system development is complex calling for a battery of tests that cover early and late developmental stages and a variety of neurodevelopmental processes. One of such assays is the “neurosphere assay,” an in vitro 3D model for developmental neurotoxicity (DNT) evaluation based on human neural progenitor cells. With this assay, one can identify compounds that disturb basic neurodevelopmental processes, such as NPC proliferation, migration, neuronal- and oligodendrocyte differentiation, as well as thyroid hormone (TH)-dependent oligodendrocyte maturation. By including viability and cytotoxicity assays into the workflow, the assays allow the distinction of specific DNT from general cytotoxicity. This chapter explains how the different test methods of the “neurosphere assay,” i.e., NPC1–6, are performed and how some of them can be multiplexed in a time- and cost-efficient manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett D, Bellinger D, Health LB-E et al (2016) Project TENDR: targeting environmental neuro-developmental risks. the TENDR consensus statement. Environ Health Perspect 124:A118–A122

    Article  PubMed  PubMed Central  Google Scholar 

  2. Grandjean P, Landrigan P (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368:2167–2178

    Article  CAS  PubMed  Google Scholar 

  3. Grandjean P, Landrigan PJ (2014) Neurobehavioural effects of developmental toxicity. Lancet Neurol 13:330–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schettler T (2001) Toxic threats to neurologic development of children. Environ Health Perspect 109:813–816

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Crofton KM, Mundy WR, Shafer TJ (2012) Developmental neurotoxicity testing: a path forward. Congenit Anom (Kyoto) 52:140–146

    Article  Google Scholar 

  6. Goldman LR, Koduru S (2000) Chemicals in the environment and developmental toxicity to children: a public health and policy perspective. Environ Health Perspect 108(Suppl 3):443–448

    Article  PubMed  PubMed Central  Google Scholar 

  7. US-EPA (1998) Health effects test guidelines OPPTS 870.6300. Dev Neurotox Study EPA 712-C-98-239

    Google Scholar 

  8. OECD (2007) OECD guidelines for the testing of chemicals/section 4: Health effects. Test no. 426: developmental neurotoxicity study. Dev Neurotox study P.26

    Google Scholar 

  9. Lein P, Silbergeld E, Locke P et al (2005) In vitro and other alternative approaches to developmental neurotoxicity testing (DNT). Environ Toxicol Pharmacol 19:735–744

    Article  CAS  PubMed  Google Scholar 

  10. Bal-Price A, Crofton KM, Leist M et al (2015) International STakeholder NETwork (ISTNET): creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes. Arch Toxicol 89:269–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bal-Price A, Hogberg HT, Crofton KM et al (2018) Recommendation on test readiness criteria for new approach methods in toxicology: exemplified for developmental neurotoxicity. Altex 35:306–352

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bal-Price AK, Coecke S, Costa L et al (2012) Conference report: advancing the science of developmental neurotoxicity (DNT): testing for better safety evaluation. ALTEX 29:202–215

    Article  PubMed  Google Scholar 

  13. Crofton KM, Mundy WR, Lein PJ et al (2011) Developmental neurotoxicity testing: recommendations for developing alternative methods for the screening and prioritization of chemicals. ALTEX 28:9–15

    PubMed  Google Scholar 

  14. Fritsche E, Crofton KM, Hernandez AF et al (2017) OECD/EFSA workshop on developmental neurotoxicity (DNT): the use of non-animal test methods for regulatory purposes. ALTEX 34:311–315

    Article  PubMed  Google Scholar 

  15. Fritsche E, Grandjean P, Crofton KM et al (2018) Consensus statement on the need for innovation, transition and implementation of developmental neurotoxicity (DNT) testing for regulatory purposes. Toxicol Appl Pharmacol 354:3–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lein P, Locke P, Goldberg A (2007) Meeting report: alternatives for developmental neurotoxicity testing. Environ Health Perspect 115:764–768

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fritsche E (2016) Report on integrated testing strategies for the identification and evaluation of chemical hazards associated with the developmental neurotoxicity (DNT). In: Report of the OECD/EFSA workshop on developmental neurotoxicity (DNT): the use of non-animal test. OECD Environ Heal Saf Publications Ser Test Assess 242

    Google Scholar 

  18. Dach K, Bendt F, Huebenthal U et al (2017) BDE-99 impairs differentiation of human and mouse NPCs into the oligodendroglial lineage by species-specific modes of action. Sci Rep 7:1–11

    Article  Google Scholar 

  19. Gassmann K, Abel J, Bothe H et al (2010) Species-specific differential AhR expression protects human neural progenitor cells against developmental neurotoxicity of PAHs. Environ Health Perspect 118:1571–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gold LS, Manley NB, Slone TH et al (2005) Supplement to the carcinogenic potency database (CPDB): results of animal bioassays published in the general literature through 1997 and by the national toxicology program in 1997–1998. Toxicol Sci 85:747–808

    Article  CAS  PubMed  Google Scholar 

  21. Knight A (2008) Systematic reviews of animal experiments demonstrate poor contributions toward human healthcare. Rev Recent Clin Trials 3:89–96

    Article  PubMed  Google Scholar 

  22. Leist M, Hartung T (2013) Reprint: inflammatory findings on species extrapolations: humans are definitely no 70-kg mice1. ALTEX 30:227–230

    Article  PubMed  Google Scholar 

  23. Masjosthusmann S, Becker D, Petzuch B et al (2018) A transcriptome comparison of time-matched developing human, mouse and rat neural progenitor cells reveals human uniqueness. Toxicol Appl Pharmacol 354:40–55

    Article  CAS  PubMed  Google Scholar 

  24. Seok J, Warren HS, Cuenca AG et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110:3507–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baumann J, Barenys M, Gassmann K, Fritsche E (2014) Comparative human and rat “neurosphere assay” for developmental neurotoxicity testing. In: Costa LG, Davila JC, Lawrence DA, Reed DJ (eds) Current protocols in toxicology, vol 59. Wiley, pp 12.21.1–12.21.24. https://doi.org/10.1002/0471140856.tx1221s59

  26. Baumann J, Gassmann K, Masjosthusmann S, DeBoer D, Bendt F, Giersiefer S, Fritsche E (2016) Comparative human and rat neurospheres reveal species differences in chemical effects on neurodevelopmental key events. Arch Toxicol 90:1415–1427

    Article  CAS  Google Scholar 

  27. Tang H, Hammack C, Ogden SC et al (2016) Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18:587–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baumann J, Dach K, Barenys M, Giersiefer S, Goniwiecha J, Lein PJ, Fritsche E (2015) Application of the Neurosphere assay for DNT Hazard assessment: challenges and limitations. Humana Press, Totowa, pp 1–29

    Google Scholar 

  29. Gassmann K, Baumann J, Giersiefer S, Schuwald J, Schreiber T, Merk HF, Fritsche E (2012) Automated neurosphere sorting and plating by the COPAS large particle sorter is a suitable method for high-throughput 3D in vitro applications. Toxicol In Vitro 26:993–1000

    Article  CAS  PubMed  Google Scholar 

  30. Moors M, Rockel TD, Abel J, Cline JE, Gassmann K, Schreiber T, Schuwald J, Weinmann N, Fritsche E (2009) Human neurospheres as three-dimensional cellular systems for developmental neurotoxicity testing. Environ Health Perspect 117:1131–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schreiber T, Gassmann K, Götz C et al (2010) Polybrominated diphenyl ethers induce developmental neurotoxicity in a human in vitro model: evidence for endocrine disruption. Environ Health Perspect 118:572–578

    Article  CAS  PubMed  Google Scholar 

  32. Tofighi R, Wan Ibrahim WN, Rebellato P et al (2011) Non-dioxin-like polychlorinated biphenyls interfere with neuronal differentiation of embryonic neural stem cells. Toxicol Sci 124:192–201

    Article  CAS  PubMed  Google Scholar 

  33. Choi BH (1989) The effects of methylmercury on the developing brain. Prog Neurobiol 32:447–470

    Article  CAS  PubMed  Google Scholar 

  34. Moors M, Cline JE, Abel J, Fritsche E (2007) ERK-dependent and -independent pathways trigger human neural progenitor cell migration. Toxicol Appl Pharmacol 221:57–67

    Article  CAS  PubMed  Google Scholar 

  35. Edoff K, Raciti M, Moors M et al (2017) Gestational age and sex influence the susceptibility of human neural progenitor cells to low levels of MeHg. Neurotox Res 32:683–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fritsche E, Barenys M, Klose J, Masjosthusmann S, Nimtz L, Schmuck M, Wuttke S, Tigges J (2018) Current availability of stem cell-based in vitro methods for developmental neurotoxicity (DNT) testing. Toxicol Sci 165:21–30

    Article  CAS  PubMed  Google Scholar 

  37. Barenys M, Gassmann K, Baksmeier C, Heinz S, Reverte I, Schmuck M, Temme T, Bendt F, Zschauer TC, Rockel TD (2017) Epigallocatechin gallate (EGCG) inhibits adhesion and migration of neural progenitor cells in vitro. Arch Toxicol 91:827–837

    Article  CAS  PubMed  Google Scholar 

  38. Schmuck MR, Temme T, Dach K et al (2017) Omnisphero: a high-content image analysis (HCA) approach for phenotypic developmental neurotoxicity (DNT) screenings of organoid neurosphere cultures in vitro. Arch Toxicol 91:2017–2028

    Article  CAS  PubMed  Google Scholar 

  39. Bal-Price A, Lein PJ, Keil KP, Sethi S, Shafer T, Barenys M, Fritsche E, Sachana M, Meek MEB (2017) Developing and applying the adverse outcome pathway concept for understanding and predicting neurotoxicity. Neurotoxicology 59:240–255

    Article  CAS  PubMed  Google Scholar 

  40. Moors M, Bose R, Johansson-Hague K et al (2012) Dickkopf 1 mediates glucocorticoid-induced changes in human neural progenitor cell proliferation and differentiation. Toxicol Sci 125:488–495

    Article  CAS  PubMed  Google Scholar 

  41. TECHNICAL BULLETIN, CellTiter-Blue® cell viability assay, revised 3/16, TB317, Promega, USA

    Google Scholar 

  42. TECHNICAL BULLETIN, CytoTox-ONE™ homogeneous membrane integrity assay, revised 5/09, TB306, Promega, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Fritsche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nimtz, L., Klose, J., Masjosthusmann, S., Barenys, M., Fritsche, E. (2019). The Neurosphere Assay as an In Vitro Method for Developmental Neurotoxicity (DNT) Evaluation. In: Aschner, M., Costa, L. (eds) Cell Culture Techniques. Neuromethods, vol 145. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9228-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9228-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9227-0

  • Online ISBN: 978-1-4939-9228-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics