Skip to main content

A Guide to Next Generation Sequence Analysis of Leishmania Genomes

  • Protocol
  • First Online:
Leishmania

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1971))

Abstract

Next generation sequencing (NGS) technology transformed Leishmania genome studies and became an indispensable tool for Leishmania researchers. Recent Leishmania genomics analyses facilitated the discovery of various genetic diversities including single nucleotide polymorphisms (SNPs), copy number variations (CNVs), somy variations, and structural variations in detail and provided valuable insights into the complexity of the genome and gene regulation. Many aspects of Leishmania NGS analyses are similar to those of related pathogens like trypanosomes. However, the analyses of Leishmania genomes face a unique challenge because of the presence of frequent aneuploidy. This makes characterization and interpretation of read depth and somy a key part of Leishmania NGS analyses because read depth affects the accuracy of detection of all genetic variations. However, there are no general guidelines on how to explore and interpret the impact of aneuploidy, and this has made it difficult for biologists and bioinformaticians, especially for beginners, to perform their own analyses and interpret results across different analyses. In this guide we discuss a wide range of topics essential for Leishmania NGS analyses, ranging from how to set up a computational environment for genome analyses, to how to characterize genetic variations among Leishmania samples, and we will particularly focus on chromosomal copy number variation and its impact on genome analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leprohon P, Fernandez-Prada C, Gazanion É et al (2015) Drug resistance analysis by next generation sequencing in Leishmania. Int J Parasitol Drugs Drug Resist 5(1):26–35

    Article  PubMed  Google Scholar 

  2. Mardis ER (2017) DNA sequencing technologies: 2006–2016. Nat Protoc 12(2):213

    Article  CAS  PubMed  Google Scholar 

  3. Imamura H, Downing T, Van den Broeck F et al (2016) Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. Elife 5:e12613

    Article  PubMed  PubMed Central  Google Scholar 

  4. Downing T, Imamura H, Decuypere S et al (2011) Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res 21(12):2143–2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rogers MB, Hilley JD, Dickens NJ et al (2011) Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res 21(12):2129–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dumetz F, Imamura H, Sanders M et al (2017) Modulation of aneuploidy in Leishmania donovani during adaptation to different in vitro and in vivo environments and its impact on gene expression. MBio 8(3):e00599–e00517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barja PP, Pescher P, Bussotti G et al (2017) Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani. Nat Ecol Evol 1(12):1961

    Article  Google Scholar 

  8. Jones NG, Catta-Preta CM, Lima AP, Mottram JC (2018) Genetically validated drug targets in Leishmania: current knowledge and future prospects. ACS Infect Dis 4(4):467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mannaert A, Downing T, Imamura H, Dujardin JC (2012) Adaptive mechanisms in pathogens: universal aneuploidy in Leishmania. Trends Parasitol 28(9):370–376

    Article  CAS  PubMed  Google Scholar 

  10. Sterkers Y, Lachaud L, Bourgeois N et al (2012) Novel insights into genome plasticity in Eukaryotes: mosaic aneuploidy in Leishmania. Mol Microbiol 86(1):15–23

    Article  CAS  PubMed  Google Scholar 

  11. Iantorno SA, Durrant C, Khan A et al (2017) Gene expression in Leishmania is regulated predominantly by gene dosage. MBio 8(5):e01393–e01317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tihon E, Imamura H, Dujardin JC et al (2017) Discovery and genomic analyses of hybridization between divergent lineages of Trypanosoma congolense, causative agent of Animal African Trypanosomiasis. Mol Ecol 26(23):6524–6538

    Article  CAS  PubMed  Google Scholar 

  13. Tihon E, Imamura H, Dujardin JC, Van Den Abbeele J (2017) Evidence for viable and stable triploid Trypanosoma congolense parasites. Parasit Vectors 10(1):468

    Article  PubMed  PubMed Central  Google Scholar 

  14. Head SR, Komori HK, LaMere SA et al (2014) Library construction for next-generation sequencing: overviews and challenges. Biotechniques 56(2):61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vincent AT, Derome N, Boyle B et al (2017) Next-generation sequencing (NGS) in the microbiological world: how to make the most of your money. J Microbiol Methods 138:60–71

    Article  CAS  PubMed  Google Scholar 

  16. Haddock SHD, Dunn CW (2011) Practical computing for biologists. Sinauer, Sunderland

    Google Scholar 

  17. Aslett M, Aurrecoechea C, Berriman M et al (2009) TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res 38(suppl_1):D457–D462

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cuypers B, Domagalska MA, Meysman P et al (2017) Multiplexed spliced-leader sequencing: a high-throughput, selective method for RNA-seq in Trypanosomatids. Sci Rep 7(1):3725

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li H, Homer N (2010) A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinform 11(5):473–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zackay A, Cotton JA, Sanders M et al (2018) Genome wide comparison of Ethiopian Leishmania donovani strains reveals differences potentially related to parasite survival. PLoS Genet 14(1):e1007133

    Article  PubMed  PubMed Central  Google Scholar 

  24. Coughlan S, Mulhair P, Sanders M et al (2017) The genome of Leishmania adleri from a mammalian host highlights chromosome fission in Sauroleishmania. Sci Rep 7:43747

    Article  PubMed  PubMed Central  Google Scholar 

  25. Coughlan S, Taylor AS, Feane E et al (2018) Leishmania naiffi and Leishmania guyanensis reference genomes highlight genome structure and gene evolution in the Viannia subgenus. R Soc Open Sci 5(4):172212

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rastrojo A, García-Hernández R, Vargas P et al (2018) Genomic and transcriptomic alterations in Leishmania donovani lines experimentally resistant to antileishmanial drugs. Int J Parasitol Drugs Drug Resist 8(2):246–264

    Article  PubMed  PubMed Central  Google Scholar 

  27. Valdivia HO, Reis-Cunha JL, Rodrigues-Luiz GF et al (2015) Comparative genomic analysis of Leishmania (Viannia) peruviana and Leishmania (Viannia) braziliensis. BMC Genomics 16(1):715

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dumetz F, Cuypers B, Imamura H et al (2018) Molecular preadaptation to antimony resistance in Leishmania donovani on the Indian subcontinent. mSphere 3(2):e00548–e00517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shaw CD, Lonchamp J, Downing T et al (2016) In vitro selection of miltefosine resistance in promastigotes of Leishmania donovani from Nepal: genomic and metabolomic characterization. Mol Microbiol 99(6):1134–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reis-Cunha JL, Rodrigues-Luiz GF, Valdivia HO et al (2015) Chromosomal copy number variation reveals differential levels of genomic plasticity in distinct Trypanosoma cruzi strains. BMC Genomics 16(1):499

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schwabl P, Imamura H, Van den Broeck F et al (2018) Parallel sexual and parasexual population genomic structure in Trypanosoma cruzi. bioRxiv. https://doi.org/10.1101/338277

  32. Rogers MB, Downing T, Smith BA et al (2014) Genomic confirmation of hybridisation and recent inbreeding in a vector-isolated Leishmania population. PLoS Genet 10(1):e1004092

    Article  PubMed  PubMed Central  Google Scholar 

  33. McKenna A, Hanna M, Banks E et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marth GT, Korf I, Yandell MD et al (1999) A general approach to single-nucleotide polymorphism discovery. Nat Genet 23(4):452

    Article  CAS  PubMed  Google Scholar 

  35. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  36. Iqbal Z, Caccamo M, Turner I et al (2012) De novo assembly and genotyping of variants using colored de Bruijn graphs. Nat Genet 44(2):226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Frith MC (2010) A new repeat-masking method enables specific detection of homologous sequences. Nucleic Acids Res 39(4):e23

    Article  PubMed  PubMed Central  Google Scholar 

  38. Derrien T, Estelln J, Sola SM et al (2012) Fast computation and applications of genome mappability. PLoS One 7(1):e30377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Otto TD, Sanders M, Berriman M, Newbold C (2010) Iterative correction of reference nucleotides (iCORN) using second generation sequencing technology. Bioinformatics 26(14):1704–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gonznformaticssecond S, Peirnformati R et al (2017) Resequencing of the Leishmania infantum (strain JPCM5) genome and de novo assembly into 36 contigs. Sci Rep 7(1):18050

    Article  Google Scholar 

  41. Cingolani P, Platts A, Wang LL et al (2012) program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6(2):80–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8(3):186–194

    Article  CAS  PubMed  Google Scholar 

  43. Schurch NJ, Schofield P, Gierliński M et al (2016) How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA 22(6):839–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fiebig M, Kelly S, Gluenz E (2015) Comparative life cycle transcriptomics revises Leishmania mexicana genome annotation and links a chromosome duplication with parasitism of vertebrates. PLoS Pathog 11(10):e1005186

    Article  PubMed  PubMed Central  Google Scholar 

  45. Patino LH, Ramírez JD (2017) RNA-seq in kinetoplastids: A powerful tool for the understanding of the biology and host-pathogen interactions. Infect Genet Evol 49:273–282

    Article  CAS  PubMed  Google Scholar 

  46. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    Article  CAS  PubMed  Google Scholar 

  47. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Geraldine De Muylder, Bart Cuypers, and Malgorzata Domagalska for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Imamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Imamura, H., Dujardin, JC. (2019). A Guide to Next Generation Sequence Analysis of Leishmania Genomes. In: Clos, J. (eds) Leishmania. Methods in Molecular Biology, vol 1971. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9210-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9210-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9209-6

  • Online ISBN: 978-1-4939-9210-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics