Skip to main content

Automated Family-Wide Annotation of Secondary Structure Elements

  • Protocol
  • First Online:
Protein Supersecondary Structures

Abstract

Secondary structure elements (SSEs) are inherent parts of protein structures, and their arrangement is characteristic for each protein family. Therefore, annotation of SSEs can facilitate orientation in the vast number of homologous structures which is now available for many protein families. It also provides a way to identify and annotate the key regions, like active sites and channels, and subsequently answer the key research questions, such as understanding of molecular function and its variability.

This chapter introduces the concept of SSE annotation and describes the workflow for obtaining SSE annotation for the members of a selected protein family using program SecStrAnnotator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The protein data bank. Nucleic Acids Res 28(1):235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sillitoe I, Lewis TE, Cuff A, Das S, Ashford P, Dawson NL et al (2015) CATH: comprehensive structural and functional annotations for genome sequences. Nucleic Acids Res 43(D1):D376–D381. https://doi.org/10.1093/nar/gku947

    Article  CAS  PubMed  Google Scholar 

  3. Fox NK, Brenner SE, Chandonia JM (2014) SCOPe: structural classification of proteins-extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res 42(D1):D304–D309. https://doi.org/10.1093/nar/gkt1240

    Article  CAS  PubMed  Google Scholar 

  4. Poulos TL, Finzel BC, Howard AJ (1987) High-resolution crystal structure of cytochrome P450cam. J Mol Biol 195(3):687–700. https://doi.org/10.1016/0022-2836(87)90190-2

    Article  CAS  PubMed  Google Scholar 

  5. Rowland P, Blaney FE, Smyth MG, Jones JJ, Leydon VR, Oxbrow AK et al (2006) Crystal structure of human cytochrome P450 2D6. J Biol Chem 281(11):7614–7622. https://doi.org/10.1074/jbc.M511232200

    Article  CAS  PubMed  Google Scholar 

  6. Cojocaru V, Winn PJ, Wade RC (2007) The ins and outs of cytochrome P450s. Biochim Biophys Acta 1770(3):390–401. https://doi.org/10.1016/j.bbagen.2006.07.005

    Article  CAS  PubMed  Google Scholar 

  7. Hutchinson EG, Thornton JM (1990) HERA—a program to draw schematic diagrams of protein secondary structures. Proteins 8(3):203–212. https://doi.org/10.1002/prot.340080303

    Article  CAS  PubMed  Google Scholar 

  8. Hutchinson EG, Thornton JM (1996) PROMOTIF—a program to identify and analyze structural motifs in proteins. Protein Sci 5(2):212–220. https://doi.org/10.1002/pro.5560050204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stivala A, Wybrow M, Wirth A, Whisstock JC, Stuckey PJ (2011) Automatic generation of protein structure cartoons with Pro-origami. Bioinformatics 27(23):3315–3316. https://doi.org/10.1093/bioinformatics/btr575

    Article  CAS  PubMed  Google Scholar 

  10. Svobodova Varekova R, Midlik A, Hutarova Varekova I, Hutar J, Navratilova V, Koca J et al (2018) Secondary structure elements—annotations and schematic 2D visualizations stable for individual protein families. Biophys J 114(3):46a–47a. https://doi.org/10.1016/j.bpj.2017.11.307

    Article  Google Scholar 

  11. Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide Protein Data Bank. Nat Struct Biol 10(12):980–980. https://doi.org/10.1038/nsb1203-980

    Article  CAS  PubMed  Google Scholar 

  12. Velankar S, Dana JM, Jacobsen J, van Ginkel G, Gane PJ, Luo J et al (2013) SIFTS: structure integration with function, taxonomy and sequences resource. Nucleic Acids Res 41(D1):D483–D489. https://doi.org/10.1093/nar/gks1258

    Article  CAS  PubMed  Google Scholar 

  13. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL et al (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285. https://doi.org/10.1093/nar/gkv1344

    Article  CAS  PubMed  Google Scholar 

  14. The PyMOL Molecular Graphics System, Version 2.0 Schrodinger, LLC

    Google Scholar 

  15. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637. https://doi.org/10.1002/bip.360221211

    Article  CAS  Google Scholar 

  16. Gore S, Sanz Garcia E, Hendrickx PMS, Gutmanas A, Westbrook JD, Yang H et al (2017) Validation of structures in the Protein Data Bank. Structure 25(12):1916–1927. https://doi.org/10.1016/j.str.2017.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shindyalov IN, Bourne PE (1998) Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 11(9):739–747. https://doi.org/10.1093/protein/11.9.739

    Article  CAS  PubMed  Google Scholar 

  18. Mitchell EM, Artymiuk PJ, Rice DW, Willett P (1990) Use of techniques derived from graph theory to compare secondary structure motifs in proteins. J Mol Biol 212(1):151–166. https://doi.org/10.1016/0022-2836(90)90312-A

    Article  CAS  PubMed  Google Scholar 

  19. Eddy SR (2004) What is dynamic programming? Nat Biotechnol 22:909. https://doi.org/10.1038/nbt0704-909

    Article  CAS  PubMed  Google Scholar 

  20. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48(3):443–453. https://doi.org/10.1016/0022-2836(70)90057-4

    Article  CAS  PubMed  Google Scholar 

  21. Bron C, Kerbosch J (1973) Algorithm 457: finding all cliques of an undirected graph. Commun ACM 16(9):575–577. https://doi.org/10.1145/362342.362367

    Article  Google Scholar 

  22. Anderson CA, Rost B (2009) Secondary structure assignment. In: Gu J, Bourne PE (eds) Structural bioinformatics, 2nd edn. Wiley, Hoboken

    Google Scholar 

  23. Cao C, Xu ST, Wang LC (2015) An algorithm for protein helix assignment using helix geometry. PLoS One 10(7):20. https://doi.org/10.1371/journal.pone.0129674

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by ELIXIR CZ research infrastructure project (MEYS) [LM2015047 to A.M., I.H.V., J.H., K.B., and R.S.V.]; Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 [LQ1601 to A.M., R.S.V., and J.K.]; ELIXIR-EXCELERATE project, which received funding from the European Union’s Horizon 2020 research and innovation program [676559]; ELIXIR-CZ: Budování kapacit [CZ.02.1.01/0.0/0.0/16_013/0001777]; Ministry of Education, Youth and Sports of the Czech Republic [project CZ.02.1.01/0.0/0.0/16_019/0000754 to V.N. and K.B.]; and Palacky University Olomouc [IGA_PrF_2018_032 to V.N.]. A.M. is a “Brno Ph.D. Talent” scholarship holder funded by Brno City Municipality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Midlik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Midlik, A. et al. (2019). Automated Family-Wide Annotation of Secondary Structure Elements. In: Kister, A. (eds) Protein Supersecondary Structures. Methods in Molecular Biology, vol 1958. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9161-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9161-7_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9160-0

  • Online ISBN: 978-1-4939-9161-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics