Skip to main content

The Histoblot Technique: A Reliable Approach to Analyze Expression Profile of Proteins and to Predict Their Molecular Association

  • Protocol
  • First Online:
Co-Immunoprecipitation Methods for Brain Tissue

Part of the book series: Neuromethods ((NM,volume 144))

Abstract

The histoblot technique, a hybrid of immunohistochemistry and immunoblotting techniques, has emerged as an attractive alternative to study the expression levels of proteins. This method is an easy, fast, and widely used approach in neuroanatomy that provides a reliable way to reveal and compare the regional distribution and expression profile of different proteins in the brain. The histoblot approach does not require the use of fixatives, which are employed for conventional immunohistochemistry. This avoids chemical modifications that altering the integrity of antibody-binding sites can make difficult the access of antibody to epitopes. Instead, the histoblot technique requires similar experimental conditions to those of immunoblot analysis of protein extracts from dissected brain regions, except that for histoblots tissue samples are not homogenized and protein transfer is achieved by mechanical pressure. Therefore, the histoblot reflects the spatial pattern in which proteins are arranged within a brain section, rather than protein bands, providing more accurate and direct information on the anatomical localization of proteins. Furthermore, though histoblot is essentially a macroanatomic technique, it exhibits a high subregional resolution. Based on comparative analyses between different proteins, the histoblots also help to predict their possible molecular interaction. However, the main disadvantage is that this method is not suitable to unravel protein distribution at the cellular and subcellular levels. In this chapter, we introduce the histoblot procedure used primarily on brain sections for the identification of quantitative changes of neurotransmitter receptors and ion channels and also discuss the limitations inherent to these approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Luján R (2010) Organization of potassium channels on the neuronal surface. J Chem Neuroanat 40:1–20

    Article  Google Scholar 

  2. Luján R (2016) Pre-embedding methods for the localization of receptors and ion channels. In: Luján R, Ciruela F (eds) Receptor and Ion channel detection in the brain, Methods and protocols. Humana Press, New York, pp 191–210

    Chapter  Google Scholar 

  3. Molnár E (2013) Immunocytochemistry and immunohistochemistry. In: Langton PD (ed) Essential guide to reading biomedical papers: recognising and interpreting best practice. Wiley-Blackwell, Hoboken, pp 117–128

    Google Scholar 

  4. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  CAS  Google Scholar 

  5. Taraboulos A, Jendroska K, Serban D, Yang S-L, DeArmond SJ, Prusiner SB (1992) Regional mapping of prion proteins in brain. Proc Natl Acad Sci U S A 89:7620–7624

    Article  CAS  Google Scholar 

  6. Okabe M, Nyakas C, Buwalda B, Luiten PGM (1993) In situ blotting: a novel method for direct transfer of native proteins from sectioned tissue to blotting membrane: procedure and some applications. J Histochem Cytochem 41:927–934

    Article  CAS  Google Scholar 

  7. Jendroska K, Hoffmann O, Schelosky L, Lees A, Poewe W, Daniel SE (1994) Absence of disease related prion protein in neurodegenerative disorders presenting with Parkinson’s syndrome. J Neurol Neurosurg Psychiatry 57:1249–1251

    Article  CAS  Google Scholar 

  8. Benke D, Wenzel A, Scheuer L, Fritschy JM, Mohler H (1995) Immunobiochemical characterization of the NMDA-receptor subunit NR1 in the developing and adult rat brain. J Recept Signal Transduct Res 15:393–411

    Article  CAS  Google Scholar 

  9. Wenzel A, Scheurer L, Künzi R, Fritschy JM, Mohler H, Benke D (1995) Distribution of NMDA receptor subunit proteins NR2A, 2B, 2C and 2D in rat brain. Neuroreport 7:45–48

    Article  CAS  Google Scholar 

  10. Wenzel A, Villa M, Mohler H, Benke D (1996) Developmental and regional expression of NMDA receptor subtypes containing the NR2D subunit in rat brain. J Neurochem 66:1240–1248

    Article  CAS  Google Scholar 

  11. Rogers SW, Gahring LC, White HS (1998) Glutamate receptor GluR1 expression is altered selectively by chronic audiogenic seizures in the Frings mouse brain. J Neurobiol 35:209–216

    Article  CAS  Google Scholar 

  12. Tönnes J, Stirli B, Cerletti C, Behrmann JT, Molnár E, Streit P (1999) Regional distribution and developmental changes of GluR1-flop protein revealed by monoclonal antibody in rat brain. J Neurochem 73:2195–2205

    PubMed  Google Scholar 

  13. Court JA, Martin-Ruiz C, Graham A, Perry E (2000) Nicotinic receptors in human brain: topography and pathology. J Chem Neuroanat 20:281–298

    Article  CAS  Google Scholar 

  14. Schulz-Schaeffer WJ, Tshöke S, Kranefuss N, Dröse W, Hause-Reitner D, Giese A, Groschup MH, Kretzschmar HA (2000) The paraffin-embedded tissue blot detects PrPSc early in the incubation time in prion diseases. Am J Pathol 156:51–56

    Article  CAS  Google Scholar 

  15. Kimura KM, Yokoyama T, Haritani M, Narita M, Belledy P, Smith J, Spencer YI (2002) In situ detection of cellular and abnormal isoforms of prion protein in brains of cattle with bovine spongiform encephalopathy and sheep with scrapie by use of a histoblot technique. J Vet Diagn Investig 14:255–257

    Article  Google Scholar 

  16. Beliczai Z, Varszegi S, Gulyas B, Halldin C, Kasa P, Gulya K (2008) Immunohistoblot analysis on whole human hemispheres from normal and Alzheimer diseased brains. Neurochem Int 53:181–183

    Article  CAS  Google Scholar 

  17. Fernández-Alacid L, Watanabe M, Molnár E, Wickman K, Luján R (2011) Developmental regulation of G protein-gated inwardly-rectifying K+ (GIRK/Kir3) channel subunits in the brain. Eur J Neurosci 34:1724–1736

    Article  Google Scholar 

  18. Ferrándiz-Huertas C, Gil-Mínguez M, Luján R (2012) Regional expression and subcellular localization of the voltage-gated calcium channel β subunits in the developing mouse brain. J Neurochem 122(6):1095–1107

    Article  Google Scholar 

  19. Martínez-Hernández J, Ballesteros-Merino C, Fernández-Alacid L, Nicolau JC, Aguado C, Luján R (2013) Polarised localisation of the voltage-gated sodium channel Na(v)1.2 in cerebellar granule cells. Cerebellum 12:16–26. https://doi.org/10.1007/s12311-012-0387-1

    Article  PubMed  Google Scholar 

  20. Luján R, Aguado C (2015) Localization and targeting of GIRK channels in mammalian central neurons. Int Rev Neurobiol 123:161–200

    Article  Google Scholar 

  21. Aguado C, Orlandi C, Fajardo-Serrano A, Gil-Minguez M, Martemyanov KA, Luján R (2016) Cellular and subcellular localization of the RGS7/Gβ5/R7BP complex in the cerebellar cortex. Front Neuroanat 10:114

    PubMed  PubMed Central  Google Scholar 

  22. Aguado C, García-Madrona S, Gil-Minguez M, Luján R (2016) Ontogenic changes and differential localization of T-type Ca(2+) channel subunits Cav3.1 and Cav3.2 in mouse hippocampus and cerebellum. Front Neuroanat 10:83

    PubMed  PubMed Central  Google Scholar 

  23. Ciruela F, Fernández-Dueñas V, Sahlholm K, Fernández-Alacid L, Nicolau JC, Watanabe M, Luján R (2010) Evidence for oligomerization between GABAB receptors and GIRK channels containing the GIRK1 and GIRK3 subunits. Eur J Neurosci 32:1265–1277. https://doi.org/10.1111/j.1460-9568.2010.07356.x

    Article  PubMed  Google Scholar 

  24. Koyrakh L, Luján R, Colon J, Karschin C, Kurachi Y, Karschin A, Wickman K (2005) Molecular and cellular diversity of neuronal G-protein gated potassium channels. J Neurosci 25:11468–11478

    Article  CAS  Google Scholar 

  25. Fajardo-Serrano A, Wydeven N, Young D, Watanabe M, Shigemoto R, Martemyanov KA, Wickman K, Luján R (2013) Association of Rgs7/Gβ5 complexes with Girk channels and GABAB receptors in hippocampal CA1 pyramidal neurons. Hippocampus 23:1231–1245. https://doi.org/10.1002/hipo.22161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kopniczky Z, Dobó E, Borbély S, Világi I, Détári L, Krisztin-Péva B, Bagosi A, Molnár E, Mihály A (2005) Lateral entorhinal cortex lesions rearrange afferents, glutamate receptors, increase seizure latency and suppress seizure-induced c-fos expression in the hippocampus of adult rat. J Neurochem 95:111–124

    Article  CAS  Google Scholar 

  27. Világi I, Dobó E, Borbély S, Czégé D, Molnár E, Mihály A (2009) Repeated 4-aminopyridine induced seizures diminish the efficacy of glutamatergic transmission in the neocortex. Exp Neurol 219:136–145

    Article  Google Scholar 

  28. Borbély S, Dobó E, Czégé D, Molnár E, Bakos M, Szűcs B, Vincze A, Világi I, Mihály A (2009) Modification of ionotropic glutamate receptor-mediated processes in the rat hippocampus following repeated, brief seizures. Neuroscience 159:358–368

    Article  Google Scholar 

  29. Borbély S, Czégé D, Molnár E, Dobó E, Mihály A, Világi I (2015) Repeated application of 4-aminopyridine provoke an increase in entorhinal cortex excitability and rearrange AMPA and kainate receptors. Neurotox Res 27:441–452. https://doi.org/10.1007/s12640-014-9515-7

    Article  CAS  PubMed  Google Scholar 

  30. Molnár E (2016) Analysis of the expression profile and regional distribution of neurotransmitter receptors and ion channels in the central nervous system using histoblots. In: Luján R, Ciruela F (eds) Receptor and Ion channel detection in the brain, Methods and protocols. Humana Press, New York, pp 191–210

    Google Scholar 

  31. Jouhanneau J-S, Ball SM, Molnár E, Isaac JTR (2011) Mechanisms of bi-directional modulation of thalamocortical transmission in barrel cortex by presynaptic kainate receptors. Neuropharmacology 60:832–841. https://doi.org/10.1016/j.neuropharm.2010.12.023

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants BFU2015-63769-R from the Spanish Ministry of Education and Science, the European Union (HBP - Project Ref. 720270), and the Junta de Comunidades de Castilla-La Mancha (SBPLY/17/180501/000229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Luján .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aguado, C., Luján, R. (2019). The Histoblot Technique: A Reliable Approach to Analyze Expression Profile of Proteins and to Predict Their Molecular Association. In: Odagaki, Y., Borroto-Escuela, D. (eds) Co-Immunoprecipitation Methods for Brain Tissue . Neuromethods, vol 144. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8985-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8985-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8984-3

  • Online ISBN: 978-1-4939-8985-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics