Skip to main content

Integrating Biological Networks for Drug Target Prediction and Prioritization

  • Protocol
  • First Online:
Computational Methods for Drug Repurposing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1903))

Abstract

Computational prediction of the clinical success or failure of a potential drug target for therapeutic use is a challenging problem. Novel network propagation algorithms that integrate heterogeneous biological networks are proving useful for drug target identification and prioritization. These approaches typically utilize a network describing relationships between targets, a method to disseminate the relevant information through the network, and a method to elucidate new associations between targets and diseases. Here, we utilize one such network propagation-based approach, DTINet, which starts with diffusion component analysis of networks of both potential drug targets and diseases. Then an inductive matrix completion algorithm is applied to identify novel disease targets based on their network topological similarities with known disease targets with successfully launched drugs. DTINet performed well as assessed with area under the precision-recall curve (AUPR = 0.88 ± 0.007) and area under the receiver operating characteristic curve (AUROC = 0.86 ± 0.008). These metrics improved when we combined data from multiple networks in the target space but reduced significantly when we used a more conservative method to define negative controls (AUPR = 0.56 ± 0.007, AUROC = 0.57 ± 0.007). We are optimistic that integration of more relevant and cleaner datasets and networks, careful calibration of model parameters, as well as algorithmic improvements will improve prediction accuracy. However, we also recognize that predicting drug targets that are likely to be successful is an extremely challenging problem due to its complex nature and sparsity of known disease targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Koscielny G, An P, Carvalho-Silva D, Cham JA, Fumis L, Gasparyan R, Hasan S, Karamanis N, Maguire M, Papa E et al (2017) Open Targets: a platform for therapeutic target identification and validation. Nucleic Acids Res 45(D1):D985–D994. https://doi.org/10.1093/nar/gkw1055

    Article  CAS  PubMed  Google Scholar 

  2. Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, Pangalos MN (2014) Lessons learned from the fate of AstraZeneca's drug pipeline: a five-dimensional framework. Nat Rev Drug Discov 13(6):419–431. https://doi.org/10.1038/nrd4309

    Article  CAS  PubMed  Google Scholar 

  3. Scannell JW, Blanckley A, Boldon H, Warrington B (2012) Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov 11(3):191–200. https://doi.org/10.1038/nrd3681

    Article  CAS  PubMed  Google Scholar 

  4. Rouillard AD, Gundersen GW, Fernandez NF, Wang Z, Monteiro CD, McDermott MG, Ma'ayan A (2016) The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database (Oxford). https://doi.org/10.1093/database/baw100

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nguyen DT, Mathias S, Bologa C, Brunak S, Fernandez N, Gaulton A, Hersey A, Holmes J, Jensen LJ, Karlsson A et al (2017) Pharos: Collating protein information to shed light on the druggable genome. Nucleic Acids Res 45(D1):D995–D1002. https://doi.org/10.1093/nar/gkw1072

    Article  CAS  PubMed  Google Scholar 

  6. Pinero J, Queralt-Rosinach N, Bravo A, Deu-Pons J, Bauer-Mehren A, Baron M, Sanz F, Furlong LI (2015) DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database (Oxford) 2015:bav028. https://doi.org/10.1093/database/bav028

    Article  CAS  Google Scholar 

  7. Davis AP, Grondin CJ, Johnson RJ, Sciaky D, King BL, McMorran R, Wiegers J, Wiegers TC, Mattingly CJ (2017) The comparative toxicogenomics database: update 2017. Nucleic Acids Res 45(D1):D972–D978. https://doi.org/10.1093/nar/gkw838

    Article  CAS  PubMed  Google Scholar 

  8. Yao J, Hurle MR, Nelson MR, Agarwal P (2018) Predicting clinically promising therapeutic hypotheses using tensor factorization. bioRxiv. https://doi.org/10.1101/272740

  9. Reisdorf WC, Chhugani N, Sanseau P, Agarwal P (2017) Harnessing public domain data to discover and validate therapeutic targets. Expert Opin Drug Discov 12(7):687–693. https://doi.org/10.1080/17460441.2017.1329296

    Article  PubMed  Google Scholar 

  10. Smedley D, Kohler S, Czeschik JC, Amberger J, Bocchini C, Hamosh A, Veldboer J, Zemojtel T, Robinson PN (2014) Walking the interactome for candidate prioritization in exome sequencing studies of Mendelian diseases. Bioinformatics 30(22):3215–3222. https://doi.org/10.1093/bioinformatics/btu508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kohler S, Bauer S, Horn D, Robinson PN (2008) Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet 82(4):949–958. https://doi.org/10.1016/j.ajhg.2008.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R (2010) Associating genes and protein complexes with disease via network propagation. PLoS Comput Biol 6(1):e1000641. https://doi.org/10.1371/journal.pcbi.1000641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM (2011) Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res 21(7):1109–1121. https://doi.org/10.1101/gr.118992.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen J, Aronow BJ, Jegga AG (2009) Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics 10:73. https://doi.org/10.1186/1471-2105-10-73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen JY, Shen C, Sivachenko AY (2006) Mining Alzheimer disease relevant proteins from integrated protein interactome data. Pac Symp Biocomput:367–378

    Google Scholar 

  16. Li L, Wang Y, An L, Kong X, Huang T (2017) A network-based method using a random walk with restart algorithm and screening tests to identify novel genes associated with Menière's disease. PLoS One 12(8):e0182592. https://doi.org/10.1371/journal.pone.0182592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mosca E, Bersanelli M, Gnocchi M, Moscatelli M, Castellani G, Milanesi L, Mezzelani A (2017) Network Diffusion-Based Prioritization of Autism Risk Genes Identifies Significantly Connected Gene Modules. Front Genet 8:129. https://doi.org/10.3389/fgene.2017.00129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fang M, Hu X, Wang Y, Zhao J, Shen X, He T (2015) NDRC: a disease-causing genes prioritized method based on network diffusion and rank concordance. IEEE Trans Nanobioscience 14(5):521–527. https://doi.org/10.1109/TNB.2015.2443852

    Article  PubMed  Google Scholar 

  19. Zhu J, Qin Y, Liu T, Wang J, Zheng X (2013) Prioritization of candidate disease genes by topological similarity between disease and protein diffusion profiles. BMC Bioinformatics 14(Suppl 5):S5. https://doi.org/10.1186/1471-2105-14-S5-S5

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li Y, Patra JC (2010) Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network. Bioinformatics 26(9):1219–1224. https://doi.org/10.1093/bioinformatics/btq108

    Article  CAS  PubMed  Google Scholar 

  21. Cowen L, Ideker T, Raphael BJ, Sharan R (2017) Network propagation: a universal amplifier of genetic associations. Nat Rev Genet 18(9):551–562. https://doi.org/10.1038/nrg.2017.38

    Article  CAS  PubMed  Google Scholar 

  22. Luo Y, Zhao X, Zhou J, Yang J, Zhang Y, Kuang W, Peng J, Chen L, Zeng J (2017) A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat Commun 8(1):573. https://doi.org/10.1038/s41467-017-00680-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tong H, Faloutsos C, Pan J (2006) Fast random walk with restart and its applications. Paper presented at the proceedings of the sixth international conference on data mining

    Google Scholar 

  24. Wang S, Cho H, Zhai C, Berger B, Peng J (2015) Exploiting ontology graph for predicting sparsely annotated gene function. Bioinformatics 31(12):i357–i364. https://doi.org/10.1093/bioinformatics/btv260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Natarajan N, Dhillon IS (2014) Inductive matrix completion for predicting gene-disease associations. Bioinformatics 30(12):i60–i68. https://doi.org/10.1093/bioinformatics/btu269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pharmaprojects Database (2018) https://citeline.com/products/pharmaprojects. Accessed 27 May 2016

  27. Finan C, Gaulton A, Kruger FA, Lumbers RT, Shah T, Engmann J, Galver L, Kelley R, Karlsson A, Santos R et al (2017) The druggable genome and support for target identification and validation in drug development. Sci Transl Med 9(383). https://doi.org/10.1126/scitranslmed.aag1166

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhou X, Menche J, Barabasi AL, Sharma A (2014) Human symptoms-disease network. Nat Commun 5:4212. https://doi.org/10.1038/ncomms5212

    Article  CAS  PubMed  Google Scholar 

  29. Li T, Wernersson R, Hansen RB, Horn H, Mercer J, Slodkowicz G, Workman CT, Rigina O, Rapacki K, Staerfeldt HH et al (2017) A scored human protein-protein interaction network to catalyze genomic interpretation. Nat Methods 14(1):61–64. https://doi.org/10.1038/nmeth.4083

    Article  CAS  PubMed  Google Scholar 

  30. Blake JA, Eppig JT, Kadin JA, Richardson JE, Smith CL, Bult CJ, the Mouse Genome Database G (2017) Mouse Genome Database (MGD)-2017: community knowledge resource for the laboratory mouse. Nucleic Acids Res 45(D1):D723–D729. https://doi.org/10.1093/nar/gkw1040

    Article  CAS  PubMed  Google Scholar 

  31. Kohler S, Vasilevsky NA, Engelstad M, Foster E, McMurry J, Ayme S, Baynam G, Bello SM, Boerkoel CF, Boycott KM et al (2017) The Human Phenotype Ontology in 2017. Nucleic Acids Res 45(D1):D865–D876. https://doi.org/10.1093/nar/gkw1039

    Article  CAS  PubMed  Google Scholar 

  32. Hurle MR, Yang L, Xie Q, Rajpal DK, Sanseau P, Agarwal P (2013) Computational drug repositioning: from data to therapeutics. Clin Pharmacol Ther 93(4):335–341. https://doi.org/10.1038/clpt.2013.1

    Article  CAS  PubMed  Google Scholar 

  33. Cheng J, Xie Q, Kumar V, Hurle M, Freudenberg JM, Yang L, Agarwal P (2013) Evaluation of analytical methods for connectivity map data. Pac Symp Biocomput:5–16

    Google Scholar 

  34. An X, Fang J, Lin Q, Lu C, Ma Q, Qu H (2017) New evidence for involvement of ESR1 gene in susceptibility to Chinese migraine. J Neurol 264(1):81–87. https://doi.org/10.1007/s00415-016-8321-y

    Article  PubMed  Google Scholar 

  35. CoSkun S, Yucel Y, Cim A, Cengiz B, Oztuzcu S, Varol S, Ozdemir HH, Uzar E (2016) Contribution of polymorphisms in ESR1, ESR2, FSHR, CYP19A1, SHBG, and NRIP1 genes to migraine susceptibility in Turkish population. J Genet 95(1):131–140

    Article  CAS  PubMed  Google Scholar 

  36. Li L, Liu R, Dong Z, Wang X, Yu S (2015) Impact of ESR1 Gene Polymorphisms on Migraine Susceptibility: A Meta-Analysis. Medicine (Baltimore) 94(35):e0976. https://doi.org/10.1097/MD.0000000000000976

    Article  CAS  Google Scholar 

  37. Rodriguez-Acevedo AJ, Maher BH, Lea RA, Benton M, Griffiths LR (2013) Association of oestrogen-receptor gene (ESR1) polymorphisms with migraine in the large Norfolk Island pedigree. Cephalalgia 33(14):1139–1147. https://doi.org/10.1177/0333102413486321

    Article  PubMed  Google Scholar 

  38. Amberger JS, Hamosh A (2017) Searching Online Mendelian Inheritance in Man (OMIM): a knowledgebase of human genes and genetic phenotypes. Curr Protoc Bioinformatics 58(1):2 1–1 2 12. https://doi.org/10.1002/cpbi.27

    Article  Google Scholar 

  39. Bengio Y (2009) Learning Deep Architectures for AI. Foundations and trends in machine learning 2. https://doi.org/10.1561/2200000006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ji, X., Freudenberg, J.M., Agarwal, P. (2019). Integrating Biological Networks for Drug Target Prediction and Prioritization. In: Vanhaelen, Q. (eds) Computational Methods for Drug Repurposing. Methods in Molecular Biology, vol 1903. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8955-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8955-3_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8954-6

  • Online ISBN: 978-1-4939-8955-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics