Skip to main content

TILLING in Barley

  • Protocol
  • First Online:
Barley

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1900))

Abstract

TILLING (Targeting Induced Local Lesions IN Genomes), a popular reverse genetics approach in barley research, combines plant mutagenesis with efficient mutation detection for studying biological function of a specific gene. The high mutation frequency within a TILLING population principally enables the identification of induced variations in (almost) all genes of a given species (more precisely a given genotype of a species) of interest, which can be tested for their functional impact on morphological and/or physiological characteristics of the plant. Several TILLING populations induced by chemical mutagenesis were established for barley (Talame et al., Plant Biotechnol J 6:477–485, 2008; Gottwald et al., BMC Res Notes 2:258, 2009; Caldwell et al. Plant J 40:143–150, 2004) and showed the possibility for adapting protocols to develop further populations. This chapter describes a chemical mutagenesis protocol for barley seeds and two independent procedures for efficient single nucleotide polymorphism (SNP) detection in a large number of mutagenized plants either by slab-gel- or capillary gel-based electrophoreses on the LI-COR 4300 DNA Analyzer and the AdvanCE FS96 instruments, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18(4):455–457. https://doi.org/10.1038/74542

    Article  CAS  PubMed  Google Scholar 

  2. Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37(5):778–786. https://doi.org/10.1111/j.1365-313X.2003.01999.x

    Article  CAS  PubMed  Google Scholar 

  3. Kurowska M, Daszkowska-Golec A, Gruszka D, Marzec M, Szurman M, Szarejko I, Maluszynski M (2011) TILLING: a shortcut in functional genomics. J Appl Genet 52(4):371–390. https://doi.org/10.1007/s13353-011-0061-1

    Article  PubMed  PubMed Central  Google Scholar 

  4. Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, Comai L, Henikoff S (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164(2):731–740

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gruszka DSI, Maluszynski M (2012) Sodium azide as a mutagen. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI International, Wallingford, pp 159–166

    Chapter  Google Scholar 

  6. Talame V, Bovina R, Sanguineti MC, Tuberosa R, Lundqvist U, Salvi S (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol J 6(5):477–485. https://doi.org/10.1111/j.1467-7652.2008.00341.x

    Article  CAS  PubMed  Google Scholar 

  7. Gottwald S, Bauer P, Komatsuda T, Lundqvist U, Stein N (2009) TILLING in the two-rowed barley cultivar ‘Barke’ reveals preferred sites of functional diversity in the gene HvHox1. BMC Res Notes 2:258. https://doi.org/10.1186/1756-0500-2-258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in barley (Hordeum vulgare L.). Plant J 40(1):143–150. https://doi.org/10.1111/j.1365-313X.2004.02190.x

    Article  CAS  PubMed  Google Scholar 

  9. Szarejko IS, Szurman-Zubrzycka M, Nawrot M, Marzec M, Gruszka D, Kurowska M, Chmielewska B, Zbieszczyk J, Jelonek J, Małuszyński M (2016) Creation of a TILLING population in barley after chemical mutagenesis with sodium azide and MNU. In: Jankowicz-Cieślak J, Tai TH, Kumlehn J, Till BJ (eds) Biotechnologies for plant mutation breeding, Protocols. Springer, Cham, pp 91–111

    Google Scholar 

  10. Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13(3):524–530. https://doi.org/10.1101/gr.977903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Till BJ, Zerr T, Comai L, Henikoff S (2006) A protocol for TILLING and Ecotilling in plants and animals. Nat Protoc 1(5):2465–2477. https://doi.org/10.1038/nprot.2006.329

    Article  CAS  PubMed  Google Scholar 

  12. Oleykowski CA, Mullins CRB, Godwin AK, Yeung AT (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res 26(20):4597–4602. https://doi.org/10.1093/nar/26.20.4597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Till BJ, Burtner C, Comai L, Henikoff S (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res 32(8):2632–2641. https://doi.org/10.1093/nar/gkh599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang X-Q, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433 doi.org/10.1038/nature22043

    Article  CAS  PubMed  Google Scholar 

  15. Deng W, Nickle DC, Learn GH, Maust B, Mullins JI (2007) ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user’s datasets. Bioinformatics 23(17):2334–2336. https://doi.org/10.1093/bioinformatics/btm331

    Article  CAS  PubMed  Google Scholar 

  16. Proost S, Van Bel M, Sterck L, Billiau K, Van Parys T, Van de Peer Y, Vandepoele K (2009) PLAZA: a comparative genomics resource to study gene and genome evolution in plants. Plant Cell 21(12):3718–3731. https://doi.org/10.1105/tpc.109.071506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285. https://doi.org/10.1093/nar/gkv1344

    Article  CAS  PubMed  Google Scholar 

  18. McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol 123(2):439–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bromberg Y, Rost B (2007) SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res 35(11):3823–3835. https://doi.org/10.1093/nar/gkm238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Acharya V, Nagarajaram HA (2012) Hansa: an automated method for discriminating disease and neutral human nsSNPs. Hum Mutat 33(2):332–337. https://doi.org/10.1002/humu.21642

    Article  CAS  PubMed  Google Scholar 

  22. Acharya V, Nagarajaram HA (2013) Response to: statistical analysis of missense mutation classifiers. Hum Mutat 34(2):407. https://doi.org/10.1002/humu.22250

    Article  PubMed  Google Scholar 

  23. Venselaar H, Te Beek TA, Kuipers RK, Hekkelman ML, Vriend G (2010) Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics 11:548. https://doi.org/10.1186/1471-2105-11-548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 31(13):3568–3571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201. https://doi.org/10.1093/bioinformatics/bti770

    Article  CAS  PubMed  Google Scholar 

  27. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858. https://doi.org/10.1038/nprot.2015.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by the European Regional Development Fund through the Innovative Economy for Poland 2007–2013, project WND-POIG.01.03.01-00-101/08 POLAPGEN-BD, task 22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Stein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jost, M., Szurman-Zubrzycka, M., Gajek, K., Szarejko, I., Stein, N. (2019). TILLING in Barley. In: Harwood, W. (eds) Barley. Methods in Molecular Biology, vol 1900. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8944-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8944-7_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8942-3

  • Online ISBN: 978-1-4939-8944-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics