Skip to main content

Chromatin Immunoprecipitation in Skeletal Myoblasts

  • Protocol
  • First Online:
Myogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1889))

Abstract

Chromatin immunoprecipitation (ChIP) is a powerful and sensitive technique that is widely used to study DNA-protein interactions. It enables an unbiased genome-wide analysis of transcriptional changes during several biological processes including cellular differentiation. Here, we describe a step-by-step protocol to identify histone modifications, transcription factor, and co-factor binding to chromatin in skeletal myoblasts. We discuss critical steps during cell harvesting, sonication, and immunoprecipitation and provide notes to evade common pitfalls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kassar-Duchossoy L, Giacone E, Gayraud-Morel B, Jory A, Gomès D, Tajbakhsh S (2005) Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev 19:1426–1431. https://doi.org/10.1101/gad.345505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4. https://doi.org/10.1101/cshperspect.a008342

    Article  Google Scholar 

  3. Bharathy N, Ling BMT, Taneja R (2013) Epigenetic regulation of skeletal muscle development and differentiation. Subcell Biochem 61:139–150. https://doi.org/10.1007/978-94-007-4525-4_7

    Article  CAS  PubMed  Google Scholar 

  4. McKinsey TA, Zhang CL, Olson EN (2001) Control of muscle development by dueling HATs and HDACs. Curr Opin Genet Dev 11:497–504

    Article  CAS  Google Scholar 

  5. Asp P, Blum R, Vethantham V, Parisi F, Micsinai M, Cheng J, Bowman C, Kluger Y, Dynlacht BD (2011) Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc Natl Acad Sci U S A 108:E149–E158. https://doi.org/10.1073/pnas.1102223108

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fittipaldi R, Caretti G (2012) Tackling skeletal muscle cells epigenome in the next-generation sequencing era. Comp Funct Genomics 2012:979168. https://doi.org/10.1155/2012/979168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cao Y, Yao Z, Sarkar D, Lawrence M, Sanchez GJ, Parker MH, MacQuarrie KL, Davison J, Morgan MT, Ruzzo WL, Gentleman RC, Tapscott SJ (2010) Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming. Dev Cell 18:662–674. https://doi.org/10.1016/j.devcel.2010.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blum R, Vethantham V, Bowman C, Rudnicki M, Dynlacht BD (2012) Genome-wide identification of enhancers in skeletal muscle: the role of MyoD1. Genes Dev 26:2763–2779. https://doi.org/10.1101/gad.200113.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu L, Sun K, Chen X, Zhao Y, Wang L, Zhou L, Sun H, Wang H (2013) Genome-wide survey by ChIP-seq reveals YY1 regulation of lincRNAs in skeletal myogenesis. EMBO J 32:2575–2588. https://doi.org/10.1038/emboj.2013.182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ohkawa Y, Mallappa C, Vallaster CSD, Imbalzano AN (2012) Isolation of nuclei from skeletal muscle satellite cells and myofibers for use in chromatin immunoprecipitation assays. Methods Mol Biol 798:517–530. https://doi.org/10.1007/978-1-61779-343-1_31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nelson JD, Denisenko O, Bomsztyk K (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 1:179–185. https://doi.org/10.1038/nprot.2006.27

    Article  CAS  PubMed  Google Scholar 

  12. Kuo MH, Allis CD (1999) In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods 19:425–433. https://doi.org/10.1006/meth.1999.0879

    Article  CAS  PubMed  Google Scholar 

  13. Nelson JD, Denisenko O, Sova P, Bomsztyk K (2006) Fast chromatin immunoprecipitation assay. Nucleic Acids Res 34:e2. https://doi.org/10.1093/nar/gnj004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thorne AW, Myers FA, Hebbes TR (2004) Native chromatin immunoprecipitation. Methods Mol Biol 287:21–44. https://doi.org/10.1385/1-59259-828-5:021

    Article  CAS  PubMed  Google Scholar 

  15. Schoppee Bortz PD, Wamhoff BR (2011) Chromatin immunoprecipitation (ChIP): revisiting the efficacy of sample preparation, sonication, quantification of sheared DNA, and analysis via PCR. PLoS One 6:e26015. https://doi.org/10.1371/journal.pone.0026015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in the R.T. laboratory is supported by grants from the National Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reshma Taneja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rao, V.K., Shankar, S.R., Taneja, R. (2019). Chromatin Immunoprecipitation in Skeletal Myoblasts. In: Rønning, S. (eds) Myogenesis. Methods in Molecular Biology, vol 1889. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8897-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8897-6_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8896-9

  • Online ISBN: 978-1-4939-8897-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics