Skip to main content

Prenatal Detection of Chromosome Aneuploidy by Quantitative Fluorescence PCR

  • Protocol
  • First Online:
Prenatal Diagnosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1885))

Abstract

Autosomal chromosome aneuploid pregnancies that survive to term, namely, trisomies 13, 18, and 21, account for 89% of chromosome abnormalities with a severe phenotype identified in prenatal samples. They are traditionally detected by full karyotype analysis of cultured cells. The average reporting time for a prenatal karyotype analysis is approximately 14 days, and in recent years, there has been increasing demand for more rapid prenatal results with respect to the common chromosome aneuploidies, to relieve maternal anxiety and facilitate options in pregnancy. The rapid tests that have been developed negate the requirement for cultured cells, instead directly testing cells from the amniotic fluid or chorionic villus sample, with the aim of generating results within 48 h of sample receipt. Interphase fluorescence in situ hybridization is the method of choice in some genetic laboratories, usually because the expertise and equipment are readily available. However, a quantitative fluorescence (QF)-PCR-based approach is now widely used and reported as a clinical diagnostic service in many studies. It may be used as a stand-alone test or as an adjunct test to full karyotype or array CGH analysis, which scan for other chromosome abnormalities not detected by the QF-PCR assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lewin P, Kleinfinger P, Bazin A et al (2000) Defining the efficiency of fluorescence in situ hybridization on uncultured amniocytes on a retrospective cohort of 27407 prenatal diagnoses. Prenat Diagn 20(1):1–6

    Article  CAS  Google Scholar 

  2. Waters JJ, Waters KS (1999) Trends in cytogenetic prenatal diagnosis in the UK: results from UKNEQAS external audit, 1987–1998. Prenat Diagn 19(11):1023–1026

    Article  CAS  Google Scholar 

  3. Klinger K, Landes G, Shook D et al (1992) Rapid detection of chromosome aneuploidies in uncultured amniocytes by using fluorescence in situ hybridization (FISH). Am J Hum Genet 51(1):55–65

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Spathas DH, Divane A, Maniatis GM et al (1994) Prenatal detection of trisomy 21 in uncultured amniocytes by fluorescence in situ hybridization: a prospective study. Prenat Diagn 14(11):1049–1054

    Article  CAS  Google Scholar 

  5. Cirigliano V, Voglino G, Ordonez E et al (2009) Rapid prenatal diagnosis of common chromosome aneuploidies by QF-PCR, results of 9 years of clinical experience. Prenat Diagn 29(1):40–49. https://doi.org/10.1002/pd.2192

    Article  CAS  PubMed  Google Scholar 

  6. Hills A, Donaghue C, Waters J et al (2010) QF-PCR as a stand-alone test for prenatal samples: the first 2 years' experience in the London region. Prenat Diagn 30(6):509–517. https://doi.org/10.1002/pd.2503

    Article  PubMed  Google Scholar 

  7. Levett LJ, Liddle S, Meredith R (2001) A large-scale evaluation of amnio-PCR for the rapid prenatal diagnosis of fetal trisomy. Ultrasound Obstet Gynecol 17(2):115–118. https://doi.org/10.1046/j.1469-0705.2001.00340.x

    Article  CAS  PubMed  Google Scholar 

  8. Mann K, Fox SP, Abbs SJ et al (2001) Development and implementation of a new rapid aneuploidy diagnostic service within the UK National Health Service and implications for the future of prenatal diagnosis. Lancet 358(9287):1057–1061. https://doi.org/10.1016/S0140-6736(01)06183-9

    Article  CAS  PubMed  Google Scholar 

  9. Mann K, Hills A, Donaghue C et al (2012) Quantitative fluorescence PCR analysis of >40,000 prenatal samples for the rapid diagnosis of trisomies 13, 18 and 21 and monosomy X. Prenat Diagn 32(12):1197–1204. https://doi.org/10.1002/pd.3986

    Article  CAS  PubMed  Google Scholar 

  10. Pertl B, Kopp S, Kroisel PM et al (1997) Quantitative fluorescence polymerase chain reaction for the rapid prenatal detection of common aneuploidies and fetal sex. Am J Obstet Gynecol 177(4):899–906

    Article  CAS  Google Scholar 

  11. Pertl B, Kopp S, Kroisel PM et al (1999) Rapid detection of chromosome aneuploidies by quantitative fluorescence PCR: first application on 247 chorionic villus samples. J Med Genet 36(4):300–303

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pertl B, Yau SC, Sherlock J et al (1994) Rapid molecular method for prenatal detection of Down's syndrome. Lancet 343(8907):1197–1198

    Article  CAS  Google Scholar 

  13. Schmidt W, Jenderny J, Hecher K et al (2000) Detection of aneuploidy in chromosomes X, Y, 13, 18 and 21 by QF-PCR in 662 selected pregnancies at risk. Mol Hum Reprod 6(9):855–860

    Article  CAS  Google Scholar 

  14. Verma L, Macdonald F, Leedham P et al (1998) Rapid and simple prenatal DNA diagnosis of Down's syndrome. Lancet 352(9121):9–12. https://doi.org/10.1016/S0140-6736(97)11090-X

    Article  CAS  PubMed  Google Scholar 

  15. Lubin MB, Elashoff JD, Wang SJ et al (1991) Precise gene dosage determination by polymerase chain reaction: theory, methodology, and statistical approach. Mol Cell Probes 5(4):307–317

    Article  CAS  Google Scholar 

  16. Donaghue C, Roberts A, Mann K et al (2003) Development and targeted application of a rapid QF-PCR test for sex chromosome imbalance. Prenat Diagn 23(3):201–210. https://doi.org/10.1002/pd.569

    Article  CAS  PubMed  Google Scholar 

  17. Stojilkovic-Mikic T, Mann K, Docherty Z et al (2005) Maternal cell contamination of prenatal samples assessed by QF-PCR genotyping. Prenat Diagn 25(1):79–83. https://doi.org/10.1002/pd.1089

    Article  PubMed  Google Scholar 

  18. Donaghue C, Mann K, Docherty Z et al (2005) Detection of mosaicism for primary trisomies in prenatal samples by QF-PCR and karyotype analysis. Prenat Diagn 25(1):65–72. https://doi.org/10.1002/pd.1086

    Article  CAS  PubMed  Google Scholar 

  19. Waters JJ, Mann K, Grimsley L et al (2007) Complete discrepancy between QF-PCR analysis of uncultured villi and karyotyping of cultured cells in the prenatal diagnosis of trisomy 21 in three CVS. Prenat Diagn 27(4):332–339. https://doi.org/10.1002/pd.1675

    Article  CAS  PubMed  Google Scholar 

  20. Waters JJ, Walsh S, Levett LJ et al (2006) Complete discrepancy between abnormal fetal karyotypes predicted by QF-PCR rapid testing and karyotyped cultured cells in a first-trimester CVS. Prenat Diagn 26(10):892–897. https://doi.org/10.1002/pd.1519

    Article  PubMed  Google Scholar 

  21. Gardner RJM, Sutherland GR (1996) Chromosome abnormalities and genetic counseling. Oxford monographs on medical genetics No. 29, 2nd edn. Oxford University Press, New York

    Google Scholar 

  22. Mann K, Kabba M, Donaghue C et al (2007) Analysis of a chromosomally mosaic placenta to assess the cell populations in dissociated chorionic villi: implications for QF-PCR aneuploidy testing. Prenat Diagn 27(3):287–289. https://doi.org/10.1002/pd.1663

    Article  CAS  PubMed  Google Scholar 

  23. Sharp AJ, Locke DP, McGrath SD et al (2005) Segmental duplications and copy-number variation in the human genome. Am J Hum Genet 77(1):78–88. https://doi.org/10.1086/431652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Andrew SE, Whiteside D, Buzin C et al (2002) An intronic polymorphism of the hMLH1 gene contributes toward incomplete genetic testing for HNPCC. Genet Test 6(4):319–322. https://doi.org/10.1089/10906570260471868

    Article  CAS  PubMed  Google Scholar 

  25. Mann K, Donaghue C, Ogilvie CM (2003) In vivo somatic microsatellite mutations identified in non-malignant human tissue. Hum Genet 114(1):110–114. https://doi.org/10.1007/s00439-003-1032-3

    Article  CAS  PubMed  Google Scholar 

  26. Clark JM (1988) Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. Nucleic Acids Res 16(20):9677–9686

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathy Mann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mann, K., Petek, E., Pertl, B. (2019). Prenatal Detection of Chromosome Aneuploidy by Quantitative Fluorescence PCR. In: Levy, B. (eds) Prenatal Diagnosis. Methods in Molecular Biology, vol 1885. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8889-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8889-1_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8887-7

  • Online ISBN: 978-1-4939-8889-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics