Skip to main content

Expansion and Adoptive Transfer of Human Vδ2+ T Cells to Assess Antitumor Effects In Vivo

  • Protocol
  • First Online:
Cancer Immunosurveillance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1884))

Abstract

Recent clinical trials have yielded promising results suggesting that γδ T cell62-based immunotherapies can be effective against hematological malignancies. Human T cells expressing Vγ9Vδ2+ receptors are particularly attractive candidates for this application, since they can be readily expanded in vitro in large quantities for adoptive transfer and do not require HLA-matching of donors and recipients. While it is well established that Vγ9Vδ2+ T cells are potently cytolytic against many human cancers and it has been shown that they can control transplanted human tumors in xenogeneic model systems, little is known about the parameters that determine the antitumor efficacy of adoptively transferred Vγ9Vδ2+ T cells in physiologically relevant scenarios. In particular, it may be important to separate their immunosurveillance functions from those employed in the context of an established tumor. Moreover, it is critical to understand how the presence of an immunosuppressive environment, such as one where tumor-infiltrating T cells are held in check by inhibitory ligands, affects the functions of Vγ9Vδ2+ T cells. This chapter describes how to establish Epstein-Barr virus (EBV) infection of human umbilical cord blood mononuclear cells (CBMCs) within immunodeficient mice, so as to drive the in vivo formation of human B cell lymphomas that contain an immunosuppressive environment. Details are provided on how to expand human Vγ9Vδ2+ T cells from peripheral blood mononuclear cells (PBMCs), administer them to the mice, and evaluate tumors and other tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moingeon P, Ythier A, Goubin G, Faure F, Nowill A, Delmon L, Rainaud M, Forestier F, Daffos F, Bohuon C et al (1986) A unique T-cell receptor complex expressed on human fetal lymphocytes displaying natural-killer-like activity. Nature 323(6089):638–640. https://doi.org/10.1038/323638a0

    Article  CAS  PubMed  Google Scholar 

  2. Sturm E, Braakman E, Fisch P, Vreugdenhil RJ, Sondel P, Bolhuis RL (1990) Human V gamma 9-V delta 2 T cell receptor-gamma delta lymphocytes show specificity to Daudi Burkitt's lymphoma cells. J Immunol 145(10):3202–3208

    CAS  PubMed  Google Scholar 

  3. Fisch P, Malkovsky M, Braakman E, Sturm E, Bolhuis RL, Prieve A, Sosman JA, Lam VA, Sondel PM (1990) Gamma/delta T cell clones and natural killer cell clones mediate distinct patterns of non-major histocompatibility complex-restricted cytolysis. J Exp Med 171(5):1567–1579

    Article  CAS  Google Scholar 

  4. Ensslin AS, Formby B (1991) Comparison of cytolytic and proliferative activities of human gamma delta and alpha beta T cells from peripheral blood against various human tumor cell lines. J Natl Cancer Inst 83(21):1564–1569

    Article  CAS  Google Scholar 

  5. Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M (2000) Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 96(2):384–392

    CAS  PubMed  Google Scholar 

  6. Burjanadze M, Condomines M, Reme T, Quittet P, Latry P, Lugagne C, Romagne F, Morel Y, Rossi JF, Klein B, Lu ZY (2007) In vitro expansion of gamma delta T cells with anti-myeloma cell activity by Phosphostim and IL-2 in patients with multiple myeloma. Br J Haematol 139(2):206–216. https://doi.org/10.1111/j.1365-2141.2007.06754.x

    Article  CAS  PubMed  Google Scholar 

  7. Saitoh A, Narita M, Watanabe N, Tochiki N, Satoh N, Takizawa J, Furukawa T, Toba K, Aizawa Y, Shinada S, Takahashi M (2008) Anti-tumor cytotoxicity of gammadelta T cells expanded from peripheral blood cells of patients with myeloma and lymphoma. Med Oncol 25(2):137–147. https://doi.org/10.1007/s12032-007-9004-4

    Article  CAS  PubMed  Google Scholar 

  8. D'Asaro M, La Mendola C, Di Liberto D, Orlando V, Todaro M, Spina M, Guggino G, Meraviglia S, Caccamo N, Messina A, Salerno A, Di Raimondo F, Vigneri P, Stassi G, Fournie JJ, Dieli F (2010) V gamma 9V delta 2 T lymphocytes efficiently recognize and kill zoledronate-sensitized, imatinib-sensitive, and imatinib-resistant chronic myelogenous leukemia cells. J Immunol 184(6):3260–3268. https://doi.org/10.4049/jimmunol.0903454

    Article  CAS  PubMed  Google Scholar 

  9. Braza MS, Klein B, Fiol G, Rossi JF (2011) Gammadelta T-cell killing of primary follicular lymphoma cells is dramatically potentiated by GA101, a type II glycoengineered anti-CD20 monoclonal antibody. Haematologica 96(3):400–407. https://doi.org/10.3324/haematol.2010.029520

    Article  CAS  PubMed  Google Scholar 

  10. Gertner-Dardenne J, Castellano R, Mamessier E, Garbit S, Kochbati E, Etienne A, Charbonnier A, Collette Y, Vey N, Olive D (2012) Human Vgamma9Vdelta2 T cells specifically recognize and kill acute myeloid leukemic blasts. J Immunol 188(9):4701–4708. https://doi.org/10.4049/jimmunol.1103710

    Article  CAS  PubMed  Google Scholar 

  11. Malkovska V, Cigel FK, Armstrong N, Storer BE, Hong R (1992) Antilymphoma activity of human gamma delta T-cells in mice with severe combined immune deficiency. Cancer Res 52(20):5610–5616

    CAS  PubMed  Google Scholar 

  12. Chen J, Niu H, He W, Ba D (2001) Antitumor activity of expanded human tumor-infiltrating gammadelta T lymphocytes. Int Arch Allergy Immunol 125(3):256–263

    Article  CAS  Google Scholar 

  13. Zheng BJ, Chan KW, Im S, Chua D, Sham JS, Tin PC, He ZM, Ng MH (2001) Anti-tumor effects of human peripheral gammadelta T cells in a mouse tumor model. Int J cancer 92(3):421–425

    Article  CAS  Google Scholar 

  14. Lozupone F, Pende D, Burgio VL, Castelli C, Spada M, Venditti M, Luciani F, Lugini L, Federici C, Ramoni C, Rivoltini L, Parmiani G, Belardelli F, Rivera P, Marcenaro S, Moretta L, Fais S (2004) Effect of human natural killer and gammadelta T cells on the growth of human autologous melanoma xenografts in SCID mice. Cancer Res 64(1):378–385

    Article  CAS  Google Scholar 

  15. Kabelitz D, Wesch D, Pitters E, Zoller M (2004) Characterization of tumor reactivity of human V gamma 9V delta 2 gamma delta T cells in vitro and in SCID mice in vivo. J Immunol 173(11):6767–6776

    Article  CAS  Google Scholar 

  16. Xiang Z, Liu Y, Zheng J, Liu M, Lv A, Gao Y, Hu H, Lam KT, Chan GC, Yang Y, Chen H, Tsao GS, Bonneville M, Lau YL, Tu W (2014) Targeted activation of human Vgamma9Vdelta2-T cells controls epstein-barr virus-induced B cell lymphoproliferative disease. Cancer Cell 26(4):565–576. https://doi.org/10.1016/j.ccr.2014.07.026

    Article  CAS  PubMed  Google Scholar 

  17. Braza MS, Klein B (2013) Anti-tumour immunotherapy with Vgamma9Vdelta2 T lymphocytes: from the bench to the bedside. Br J Haematol 160(2):123–132. https://doi.org/10.1111/bjh.12090

    Article  CAS  PubMed  Google Scholar 

  18. Fournie JJ, Sicard H, Poupot M, Bezombes C, Blanc A, Romagne F, Ysebaert L, Laurent G (2013) What lessons can be learned from gammadelta T cell-based cancer immunotherapy trials? Cell Mol Immunol 10(1):35–41. https://doi.org/10.1038/cmi.2012.39

    Article  CAS  PubMed  Google Scholar 

  19. Buccheri S, Guggino G, Caccamo N, Li Donni P, Dieli F (2014) Efficacy and safety of gammadeltaT cell-based tumor immunotherapy: a meta-analysis. J Biol Regul Homeost Agents 28(1):81–90

    CAS  PubMed  Google Scholar 

  20. Brandes M, Willimann K, Moser B (2005) Professional antigen-presentation function by human gammadelta T Cells. Science 309(5732):264–268. https://doi.org/10.1126/science.1110267

    Article  CAS  PubMed  Google Scholar 

  21. Landmeier S, Altvater B, Pscherer S, Juergens H, Varnholt L, Hansmeier A, Bollard CM, Moosmann A, Bisping G, Rossig C (2009) Activated human gammadelta T cells as stimulators of specific CD8+ T-cell responses to subdominant Epstein Barr virus epitopes: potential for immunotherapy of cancer. J Immunother 32(3):310–321. https://doi.org/10.1097/CJI.0b013e31819b7c30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brandes M, Willimann K, Bioley G, Levy N, Eberl M, Luo M, Tampe R, Levy F, Romero P, Moser B (2009) Cross-presenting human gammadelta T cells induce robust CD8+ alphabeta T cell responses. Proc Natl Acad Sci U S A 106(7):2307–2312. https://doi.org/10.1073/pnas.0810059106

    Article  PubMed  PubMed Central  Google Scholar 

  23. Altvater B, Pscherer S, Landmeier S, Kailayangiri S, Savoldo B, Juergens H, Rossig C (2012) Activated human gammadelta T cells induce peptide-specific CD8+ T-cell responses to tumor-associated self-antigens. Cancer Immunol Immunother 61(3):385–396. https://doi.org/10.1007/s00262-011-1111-6

    Article  CAS  PubMed  Google Scholar 

  24. Moss DJ, Burrows SR, Silins SL, Misko I, Khanna R (2001) The immunology of Epstein-Barr virus infection. Philos Trans R Soc Lond Ser B Biol Sci 356(1408):475–488

    Article  CAS  Google Scholar 

  25. Taylor GS, Long HM, Brooks JM, Rickinson AB, Hislop AD (2015) The immunology of Epstein-Barr virus-induced disease. Annu Rev Immunol 33:787–821. https://doi.org/10.1146/annurev-immunol-032414-112326

    Article  CAS  PubMed  Google Scholar 

  26. Hopwood P, Crawford DH (2000) The role of EBV in post-transplant malignancies: a review. J Clin Pathol 53(4):248–254

    Article  CAS  Google Scholar 

  27. Sanz J, Andreu R (2014) Epstein-Barr virus-associated posttransplant lymphoproliferative disorder after allogeneic stem cell transplantation. Curr Opin Oncol 26(6):677–683. https://doi.org/10.1097/CCO.0000000000000119

    Article  CAS  PubMed  Google Scholar 

  28. Ma SD, Xu X, Plowshay J, Ranheim EA, Burlingham WJ, Jensen JL, Asimakopoulos F, Tang W, Gulley ML, Cesarman E, Gumperz JE, Kenney SC (2015) LMP1-deficient Epstein-Barr virus mutant requires T cells for lymphomagenesis. J Clin Invest 125(1):304–315. https://doi.org/10.1172/JCI76357

    Article  PubMed  Google Scholar 

  29. Ma SD, Xu X, Jones R, Delecluse HJ, Zumwalde NA, Sharma A, Gumperz JE, Kenney SC (2016) PD-1/CTLA-4 Blockade Inhibits Epstein-Barr Virus-Induced Lymphoma Growth in a Cord Blood Humanized-Mouse Model. PLoS Pathog 12(5):e1005642. https://doi.org/10.1371/journal.ppat.1005642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zumwalde NA, Sharma A, Xu X, Ma S, Schneider CL, Romero-Masters JC, Hudson AW, Gendron-Fitzpatrick A, Kenney SC, Gumperz JE (2017) Adoptively transferred Vgamma9Vdelta2 T cells show potent antitumor effects in a preclinical B cell lymphomagenesis model. JCI Insight 2 (13). https://doi.org/10.1172/jci.insight.93179

  31. Tanaka Y, Sano S, Nieves E, De Libero G, Rosa D, Modlin RL, Brenner MB, Bloom BR, Morita CT (1994) Nonpeptide ligands for human gamma delta T cells. Proc Natl Acad Sci U S A 91(17):8175–8179

    Article  CAS  Google Scholar 

  32. Morita CT, Beckman EM, Bukowski JF, Tanaka Y, Band H, Bloom BR, Golan DE, Brenner MB (1995) Direct presentation of nonpeptide prenyl pyrophosphate antigens to human gamma delta T cells. Immunity 3(4):495–507

    Article  CAS  Google Scholar 

  33. Bukowski JF, Morita CT, Tanaka Y, Bloom BR, Brenner MB, Band H (1995) V gamma 2V delta 2 TCR-dependent recognition of non-peptide antigens and Daudi cells analyzed by TCR gene transfer. J Immunol 154(3):998–1006

    CAS  PubMed  Google Scholar 

  34. Bukowski JF, Morita CT, Band H, Brenner MB (1998) Crucial role of TCR gamma chain junctional region in prenyl pyrophosphate antigen recognition by gamma delta T cells. J Immunol 161(1):286–293

    CAS  PubMed  Google Scholar 

  35. Vavassori S, Kumar A, Wan GS, Ramanjaneyulu GS, Cavallari M, El Daker S, Beddoe T, Theodossis A, Williams NK, Gostick E, Price DA, Soudamini DU, Voon KK, Olivo M, Rossjohn J, Mori L, De Libero G (2013) Butyrophilin 3A1 binds phosphorylated antigens and stimulates human gammadelta T cells. Nat Immunol 14(9):908–916. https://doi.org/10.1038/ni.2665

    Article  CAS  PubMed  Google Scholar 

  36. Wang H, Henry O, Distefano MD, Wang YC, Raikkonen J, Monkkonen J, Tanaka Y, Morita CT (2013) Butyrophilin 3A1 plays an essential role in prenyl pyrophosphate stimulation of human Vgamma2Vdelta2 T cells. J Immunol 191(3):1029–1042. https://doi.org/10.4049/jimmunol.1300658

    Article  CAS  PubMed  Google Scholar 

  37. Sandstrom A, Peigne CM, Leger A, Crooks JE, Konczak F, Gesnel MC, Breathnach R, Bonneville M, Scotet E, Adams EJ (2014) The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vgamma9Vdelta2 T cells. Immunity 40(4):490–500. https://doi.org/10.1016/j.immuni.2014.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang H, Morita CT (2015) Sensor Function for Butyrophilin 3A1 in Prenyl Pyrophosphate Stimulation of Human Vgamma2Vdelta2 T Cells. J Immunol 195(10):4583–4594. https://doi.org/10.4049/jimmunol.1500314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rhodes DA, Chen HC, Price AJ, Keeble AH, Davey MS, James LC, Eberl M, Trowsdale J (2015) Activation of human gammadelta T cells by cytosolic interactions of BTN3A1 with soluble phosphoantigens and the cytoskeletal adaptor periplakin. J Immunol 194(5):2390–2398. https://doi.org/10.4049/jimmunol.1401064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Riano F, Karunakaran MM, Starick L, Li J, Scholz CJ, Kunzmann V, Olive D, Amslinger S, Herrmann T (2014) Vgamma9Vdelta2 TCR-activation by phosphorylated antigens requires butyrophilin 3 A1 (BTN3A1) and additional genes on human chromosome 6. Eur J Immunol 44(9):2571–2576. https://doi.org/10.1002/eji.201444712

    Article  CAS  PubMed  Google Scholar 

  41. Decaup E, Duault C, Bezombes C, Poupot M, Savina A, Olive D, Fournie JJ (2014) Phosphoantigens and butyrophilin 3A1 induce similar intracellular activation signaling in human TCRVgamma9+ gammadelta T lymphocytes. Immunol Lett 161(1):133–137. https://doi.org/10.1016/j.imlet.2014.05.011

    Article  CAS  PubMed  Google Scholar 

  42. Slaoui M, Fiette L (2011) Histopathology procedures: from tissue sampling to histopathological evaluation. Methods Mol Biol 691:69–82. https://doi.org/10.1007/978-1-60761-849-2_4

    Article  CAS  PubMed  Google Scholar 

  43. Lockridge JL, Zhou Y, Becker YA, Ma S, Kenney SC, Hematti P, Capitini CM, Burlingham WJ, Gendron-Fitzpatrick A, Gumperz JE (2013) Mice engrafted with human fetal thymic tissue and hematopoietic stem cells develop pathology resembling chronic graft-versus-host disease. Biol Blood Marrow Transplant 19(9):1310–1322. https://doi.org/10.1016/j.bbmt.2013.06.007

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ma SD, Hegde S, Young KH, Sullivan R, Rajesh D, Zhou Y, Jankowska-Gan E, Burlingham WJ, Sun X, Gulley ML, Tang W, Gumperz JE, Kenney SC (2011) A new model of Epstein-Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas. J Virol 85(1):165–177. https://doi.org/10.1128/JVI.01512-10

    Article  CAS  PubMed  Google Scholar 

  45. Ma SD, Yu X, Mertz JE, Gumperz JE, Reinheim E, Zhou Y, Tang W, Burlingham WJ, Gulley ML, Kenney SC (2012) An Epstein-Barr virus (EBV) mutant with enhanced BZLF1 expression causes lymphomas with abortive lytic EBV infection in a humanized mouse model. J Virol 86(15):7976–7987. https://doi.org/10.1128/JVI.00770-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tsai MH, Raykova A, Klinke O, Bernhardt K, Gartner K, Leung CS, Geletneky K, Sertel S, Munz C, Feederle R, Delecluse HJ (2013) Spontaneous lytic replication and epitheliotropism define an Epstein-Barr virus strain found in carcinomas. Cell Rep 5(2):458–470. https://doi.org/10.1016/j.celrep.2013.09.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding provided by a pilot grant from the University of Wisconsin Carbone Cancer Center that was supported in part by NIH grant NCI P30 CA014520, and by NIH grant R21 AI116007 and DoD CDMRP Award CA160396 to JEG; support for NAZ provided by T32 CA157322. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors have no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny E. Gumperz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sharma, A., Zumwalde, N.A., Gumperz, J.E. (2019). Expansion and Adoptive Transfer of Human Vδ2+ T Cells to Assess Antitumor Effects In Vivo. In: López-Soto, A., Folgueras, A. (eds) Cancer Immunosurveillance. Methods in Molecular Biology, vol 1884. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8885-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8885-3_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8884-6

  • Online ISBN: 978-1-4939-8885-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics