Skip to main content

Targeting Tertiary Lymphoid Structures for Tumor Immunotherapy

  • Protocol
  • First Online:
Tertiary Lymphoid Structures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1845))

Abstract

Tumor microenvironments (TME) are usually immunosuppressive and prevent lymphocyte priming. Recent clinical trials have shown that cancer immunotherapy such as immune checkpoint inhibitors can induce unprecedented durable responses in patients with a variety of cancers. Tertiary lymphoid structures (TLS) can form inside or adjacent to tumor tissues due to persistent inflammation. The formation of TLS facilitates lymphocyte trafficking and infiltration into tumor tissues. It can also support effective antigen presentation and lymphocyte activation. Thus, TLS have become an intriguing target to manipulate antitumor immunity. Several therapeutics targeting TLS have been developed and shown promising antitumor effects in various mouse models. In this chapter, we describe the general approach to establish transplantable mouse tumor models for the study of immunotherapy. We introduce the strategies for therapy through systemic or local treatment targeting TLS. We also present approaches to evaluate the antitumor immune responses provoked by the therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726

    Article  PubMed  CAS  Google Scholar 

  2. Couzin-Frankel J (2013) Cancer immunotherapy. Science 342(6165):1432–1433

    Article  PubMed  CAS  Google Scholar 

  3. Sunshine J, Taube JM (2015) Pd-1/Pd-L1 Inhibitors. Curr Opin Pharmacol 23:32–38

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10

    Article  PubMed  CAS  Google Scholar 

  5. Woo S-R, Corrales L, Gajewski TF (2015) Innate immune recognition of cancer. Annu Rev Immunol 33:445–474

    Article  PubMed  CAS  Google Scholar 

  6. Tang H, Zhu M, Qiao J, Fu Y-X (2017) Lymphotoxin signalling in tertiary lymphoid structures and immunotherapy. Cell Mol Immunol 14:809–818

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Yu P, Lee Y, Liu W et al (2004) Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol 5(2):141–149

    Article  CAS  PubMed  Google Scholar 

  8. Sautès-Fridman C, Fridman WH (2016) TLS in tumors: what lies within. Trends Immunol 37(1):1–2

    Article  CAS  PubMed  Google Scholar 

  9. Lukashev M, LePage D, Wilson C et al (2006) Targeting the lymphotoxin-β receptor with agonist antibodies as a potential cancer therapy. Cancer Res 66(19):9617–9624

    Article  CAS  PubMed  Google Scholar 

  10. Schrama D, thor Straten P, Fischer WH et al (2001) Targeting of lymphotoxin-α to the tumor elicits an efficient immune response associated with induction of peripheral lymphoid-like tissue. Immunity 14(2):111–121

    Article  PubMed  CAS  Google Scholar 

  11. Johansson-Percival A, Li Z-J, Lakhiani DD et al (2015) Intratumoral LIGHT restores pericyte contractile properties and vessel integrity. Cell Rep 13(12):2687–2698

    Article  PubMed  CAS  Google Scholar 

  12. Tang H, Wang Y, Chlewicki LK et al (2016) Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer Cell 29(3):285–296

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Johansson-Percival A, He B, Li Z-J et al (2017) De novo induction of intratumoral lymphoid structures and vessel normalization enhances immunotherapy in resistant tumors. Nat Immunol 18:1207

    Article  PubMed  CAS  Google Scholar 

  14. Dieu-Nosjean MC, Giraldo NA, Kaplon H et al (2016) Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers. Immunol Rev 271(1):260–275

    Article  PubMed  CAS  Google Scholar 

  15. Dieu-Nosjean M-C, Goc J, Giraldo NA et al (2014) Tertiary lymphoid structures in cancer and beyond. Trends Immunol 35(11):571–580. https://doi.org/10.1016/j.it.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  16. Weinstein AM, Storkus WJ (2015) Therapeutic lymphoid organogenesis in the tumor microenvironment. In: Xiang-Yang W, Paul BF (eds) Advances in cancer research, vol 128. Academic Press, pp 197–233. https://doi.org/10.1016/bs.acr.2015.04.003

  17. Coppola D, Nebozhyn M, Khalil F et al (2011) Unique ectopic lymph node-like structures present in human primary colorectal carcinoma are identified by immune gene Array profiling. Am J Pathol 179(1):37–45. https://doi.org/10.1016/j.ajpath.2011.03.007

    Article  PubMed  PubMed Central  Google Scholar 

  18. Di Caro G, Bergomas F, Grizzi F et al (2014) Occurrence of tertiary lymphoid tissue is associated with T-cell infiltration and predicts better prognosis in early-stage colorectal cancers. Clin Cancer Res 20(8):2147–2158

    Article  PubMed  CAS  Google Scholar 

  19. McMullen T, Lai R, Dabbagh L et al (2010) Survival in rectal cancer is predicted by T cell infiltration of tumour-associated lymphoid nodules. Clin Exp Immunol 161(1):81–88

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Messina JL, Fenstermacher DA, Eschrich S et al (2012) 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci Rep 2:765

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Pitzalis C, Jones GW, Bombardieri M, Jones SA (2014) Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat Rev Immunol 14(7):447

    Article  CAS  PubMed  Google Scholar 

  22. Wick M, Dubey P, Koeppen H et al (1997) Antigenic cancer cells grow progressively in immune hosts without evidence for T cell exhaustion or systemic anergy. J Exp Med 186(2):229–238

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Lee Y, Chin RK, Christiansen P et al (2006) Recruitment and activation of naive T cells in the islets by lymphotoxin β receptor-dependent tertiary lymphoid structure. Immunity 25(3):499–509

    Article  PubMed  CAS  Google Scholar 

  24. Yang D, Ud Din N, Browning DD et al (2007) Targeting lymphotoxin β receptor with tumor-specific T lymphocytes for tumor regression. Clin Cancer Res 13(17):5202–5210

    Article  CAS  PubMed  Google Scholar 

  25. Sharma S, Stolina M, Luo J et al (2000) Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo. J Immunol 164(9):4558–4563

    Article  CAS  PubMed  Google Scholar 

  26. Hillinger S, Yang S, Batra R et al (2006) CCL19 reduces tumour burden in a model of advanced lung cancer. Br J Cancer 94(7):1029–1034

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Reisfeld RA, Gillies SD, Mendelsohn J et al (1996) Involvement of B lymphocytes in the growth inhibition of human pulmonary melanoma metastases in athymic nu/nu mice by an antibody-lymphotoxin fusion protein. Cancer Res 56(8):1707–1712

    CAS  PubMed  Google Scholar 

  28. Moussion C, Girard J-P (2011) Dendritic cells control lymphocyte entry to lymph nodes through high endothelial venules. Nature 479(7374):542–546

    Article  CAS  PubMed  Google Scholar 

  29. Chai Q, Onder L, Scandella E et al (2013) Maturation of lymph node fibroblastic reticular cells from myofibroblastic precursors is critical for antiviral immunity. Immunity 38(5):1013–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Y.X.F. holds the Mary Nell and Ralph B. Rogers Professorship in Immunology. This work was in part supported by the US National Institutes of Health through National Cancer Institute grants CA141975 and CA97296, CPRIT grant RR150072, grants from the Chinese Academy of Sciences (XDA09030303), and the Chinese Ministry of Science and Technology (2012ZX10002006, 2011DFA31250, and 2012AA020701) to Y.X.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haidong Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tang, H., Qiu, X., Timmerman, C., Fu, YX. (2018). Targeting Tertiary Lymphoid Structures for Tumor Immunotherapy. In: Dieu-Nosjean, MC. (eds) Tertiary Lymphoid Structures. Methods in Molecular Biology, vol 1845. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8709-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8709-2_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8708-5

  • Online ISBN: 978-1-4939-8709-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics