Skip to main content

Analysis of Legionella Metabolism by Pathogen Vacuole Proteomics

  • Protocol
  • First Online:
Microbial Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1841))

Abstract

The causative agent of Legionnaires’ disease, Legionella pneumophila, replicates in free-living amoebae as well as in macrophages of the innate immune system within a distinct membrane-bound compartment, the “Legionella-containing-vacuole” (LCV). LCV formation is a complex process and requires the bacterial Icm/Dot type IV secretion system, which translocates approximately 300 different “effector” proteins. Intact LCVs from infected Dictyostelium discoideum amoebae or RAW 264.7 murine macrophages can be purified using a straightforward protocol. In the first step, the LCVs in cell homogenates are tagged with an antibody directed against an L. pneumophila effector protein specifically localizing to the pathogen vacuole membrane and isolated by immunomagnetic separation using a secondary antibody coupled to magnetic beads. In the second step, the LCVs are further enriched by density gradient centrifugation through a Histodenz cushion. LCVs thus purified are analyzed by mass spectrometry-based proteomics and characterized by biochemical and cell biological approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACES:

N-(2-acetamido)-2-aminoethanesulfonic acid

GFP:

Green fluorescent protein

HEPES:

N-2-hydroxy-ethylpiperazine-N′-2-ethanesulfonic acid

Icm/Dot:

Intracellular multiplication/defective organelle trafficking

LCV:

Legionella-containing vacuole

T2SS:

Type II secretion system

T4SS:

Type IV secretion system

References

  1. Hoffmann C, Harrison CF, Hilbi H (2014) The natural alternative: protozoa as cellular models for Legionella infection. Cell Microbiol 16(1):15–26

    Article  CAS  PubMed  Google Scholar 

  2. Gao LY, Harb OS, Abu Kwaik Y (1997) Utilization of similar mechanisms by Legionella pneumophila to parasitize two evolutionarily distant host cells, mammalian macrophages and protozoa. Infect Immun 65(11):4738–4746

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hilbi H, Haas A (2012) Secretive bacterial pathogens and the secretory pathway. Traffic 13(9):1187–1197

    Article  CAS  PubMed  Google Scholar 

  4. Isberg RR, O'Connor TJ, Heidtman M (2009) The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 7(1):13–24

    Article  CAS  PubMed  Google Scholar 

  5. Hubber A, Roy CR (2010) Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26:261–283

    Article  CAS  PubMed  Google Scholar 

  6. Zhu W, Banga S, Tan Y, Zheng C, Stephenson R, Gately J, Luo ZQ (2011) Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila. PLoS One 6(3):e17638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Finsel I, Ragaz C, Hoffmann C, Harrison CF, Weber S, van Rahden VA, Johannes L, Hilbi H (2013) The Legionella effector RidL inhibits retrograde trafficking to promote intracellular replication. Cell Host Microbe 14(1):38–50

    Article  CAS  PubMed  Google Scholar 

  8. Haneburger I, Hilbi H (2013) Phosphoinositide lipids and the Legionella pathogen vacuole. Curr Top Microbiol Immunol 376:155–173

    PubMed  Google Scholar 

  9. Rothmeier E, Pfaffinger G, Hoffmann C, Harrison CF, Grabmayr H, Repnik U, Hannemann M, Wölke S, Bausch A, Griffiths G, Müller-Taubenberger A, Itzen A, Hilbi H (2013) Activation of Ran GTPase by a Legionella effector promotes microtubule polymerization, pathogen vacuole motility and infection. PLoS Pathog 9(9):e1003598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoffmann C, Finsel I, Otto A, Pfaffinger G, Rothmeier E, Hecker M, Becher D, Hilbi H (2014) Functional analysis of novel Rab GTPases identified in the proteome of purified Legionellaa-containing vacuoles from macrophages. Cell Microbiol 16(7):1034–1052

    CAS  PubMed  Google Scholar 

  11. Eisenreich W, Dandekar T, Heesemann J, Goebel W (2010) Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol 8(6):401–412

    Article  CAS  PubMed  Google Scholar 

  12. Mills SD, Finlay BB (1998) Isolation and characterization of Salmonella typhimurium and Yersinia pseudotuberculosis-containing phagosomes from infected mouse macrophages: Y. pseudotuberculosis traffics to terminal lysosomes where they are degraded. Eur J Cell Biol 77(1):35–47

    Article  CAS  PubMed  Google Scholar 

  13. Vorwerk S, Krieger V, Deiwick J, Hensel M, Hansmeier N (2015) Proteomes of host cell membranes modified by intracellular activities of Salmonella enterica. Mol Cell Proteomics 14(1):81–92

    Article  CAS  PubMed  Google Scholar 

  14. Matsumoto A (1981) Isolation and electron microscopic observations of intracytoplasmic inclusions containing Chlamydia psittaci. J Bacteriol 145(1):605–612

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sturgill-Koszycki S, Haddix PL, Russell DG (1997) The interaction between Mycobacte-rium and the macrophage analyzed by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 18(14):2558–2565

    Article  CAS  PubMed  Google Scholar 

  16. Herweg JA, Hansmeier N, Otto A, Geffken AC, Subbarayal P, Prusty BK, Becher D, Hensel M, Schaible UE, Rudel T, Hilbi H (2015) Purification and proteomics of pathogen-modified vacuoles and membranes. Front Cell Infect Microbiol 5:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Urwyler S, Finsel I, Ragaz C, Hilbi H (2010) Isolation of Legionella-containing vacuoles by immuno-magnetic separation. Curr Protoc Cell Biol 3:34

    PubMed  Google Scholar 

  18. Hoffmann C, Finsel I, Hilbi H (2013) Pathogen vacuole purification from Legionella-infected amoeba and macrophages. Methods Mol Biol 954:309–321

    Article  CAS  PubMed  Google Scholar 

  19. Finsel I, Hoffmann C, Hilbi H (2013) Immunomagnetic purification of fluorescent Legionella-containing vacuoles. Methods Mol Biol 983:431–443

    Article  CAS  PubMed  Google Scholar 

  20. Luo ZQ, Isberg RR (2004) Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc Natl Acad Sci U S A 101(3):841–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brombacher E, Urwyler S, Ragaz C, Weber SS, Kami K, Overduin M, Hilbi H (2009) Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J Biol Chem 284(8):4846–4856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weber S, Dolinsky S, Hilbi H (2013) Interactions of Legionella effector proteins with host phosphoinositide lipids. Methods Mol Biol 954:367–380

    Article  CAS  PubMed  Google Scholar 

  23. Dolinsky S, Haneburger I, Cichy A, Hannemann M, Itzen A, Hilbi H (2014) The Legionella longbeachae Icm/Dot substrate SidC selectively binds phosphatidylinositol 4-phosphate with nanomolar affinity and promotes pathogen vacuole-endoplasmic reticulum interactions. Infect Immun 82(10):4021–4033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Urwyler S, Nyfeler Y, Ragaz C, Lee H, Mueller LN, Aebersold R, Hilbi H (2009) Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic 10(1):76–87

    Article  CAS  PubMed  Google Scholar 

  25. Hilbi H, Hoffmann C, Harrison CF (2011) Legionella spp. outdoors: colonization, communication and persistence. Environ Microbiol Rep 3(3):286–296

    Article  CAS  PubMed  Google Scholar 

  26. Rohmer L, Hocquet D, Miller SI (2011) Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol 19(7):341–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abu Kwaik Y, Bumann D (2013) Microbial quest for food in vivo: ‘nutritional virulence’ as an emerging paradigm. Cell Microbiol 15(6):882–890

    Article  CAS  PubMed  Google Scholar 

  28. Manske C, Hilbi H (2014) Metabolism of the vacuolar pathogen Legionella and implications for virulence. Front Cell Infect Microbiol 4:125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pine L, George JR, Reeves MW, Harrell WK (1979) Development of a chemically defined liquid medium for growth of Legionella pneumophila. J Clin Microbiol 9(5):615–626

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ristroph JD, Hedlund KW, Gowda S (1981) Chemically defined medium for Legionella pneumophila growth. J Clin Microbiol 13(1):115–119

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tesh MJ, Morse SA, Miller RD (1983) Intermediary metabolism in Legionella pneumophila: utilization of amino acids and other compounds as energy sources. J Bacteriol 154(3):1104–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cazalet C, Rusniok C, Brüggemann H, Zidane N, Magnier A, Ma L, Tichit M, Jarraud S, Bouchier C, Vandenesch F, Kunst F, Etienne J, Glaser P, Buchrieser C (2004) Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 36(11):1165–1173

    Article  CAS  PubMed  Google Scholar 

  33. Chien M, Morozova I, Shi S, Sheng H, Chen J, Gomez SM, Asamani G, Hill K, Nuara J, Feder M, Rineer J, Greenberg JJ, Steshenko V, Park SH, Zhao B, Teplitskaya E, Edwards JR, Pampou S, Georghiou A, Chou IC, Iannuccilli W, Ulz ME, Kim DH, Geringer-Sameth A, Goldsberry C, Morozov P, Fischer SG, Segal G, Qu X, Rzhetsky A, Zhang P, Cayanis E, De Jong PJ, Ju J, Kalachikov S, Shuman HA, Russo JJ (2004) The genomic sequence of the accidental pathogen Legionella pneumophila. Science 305(5692):1966–1968

    Article  CAS  PubMed  Google Scholar 

  34. Sauer JD, Bachman MA, Swanson MS (2005) The phagosomal transporter A couples threonine acquisition to differentiation and replication of Legionella pneumophila in macrophages. Proc Natl Acad Sci U S A 102(28):9924–9929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fonseca MV, Sauer JD, Crepin S, Byrne B, Swanson MS (2014) The phtC-phtD locus equips Legionella pneumophila for thymidine salvage and replication in macrophages. Infect Immun 82(2):720–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Faucher SP, Mueller CA, Shuman HA (2011) Legionella pneumophila transcriptome during intracellular multiplication in human macrophages. Front Microbiol 2:60

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wieland H, Ullrich S, Lang F, Neumeister B (2005) Intracellular multiplication of Legionella pneumophila depends on host cell amino acid transporter SLC1A5. Mol Microbiol 55(5):1528–1537

    Article  CAS  PubMed  Google Scholar 

  38. Price CT, Al-Quadan T, Santic M, Rosenshine I, Abu Kwaik Y (2011) Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science 334(6062):1553–1557

    Article  CAS  PubMed  Google Scholar 

  39. Schunder E, Gillmaier N, Kutzner E, Eisenreich W, Herrmann V, Lautner M, Heuner K (2014) Amino acid uptake and metabolism of Legionella pneumophila hosted by Acanthamoeba castellanii. J Biol Chem 289(30):21040–21054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. D'Auria G, Jimenez-Hernandez N, Peris-Bondia F, Moya A, Latorre A (2010) Legionella pneumophila pangenome reveals strain-specific virulence factors. BMC Genomics 11(1):181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schroeder GN, Petty NK, Mousnier A, Harding CR, Vogrin AJ, Wee B, Fry NK, Harrison TG, Newton HJ, Thomson NR, Beatson SA, Dougan G, Hartland EL, Frankel G (2010) Legionella pneumophila strain 130b possesses a unique combination of type IV secretion systems and novel Dot/Icm secretion system effector proteins. J Bacteriol 192(22):6001–6016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cazalet C, Gomez-Valero L, Rusniok C, Lomma M, Dervins-Ravault D, Newton HJ, Sansom FM, Jarraud S, Zidane N, Ma L, Bouchier C, Etienne J, Hartland EL, Buchrieser C (2010) Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires’ disease. PLoS Genet 6(2):e1000851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Eylert E, Herrmann V, Jules M, Gillmaier N, Lautner M, Buchrieser C, Eisenreich W, Heuner K (2010) Isotopologue profiling of Legionella pneumophila: role of serine and glucose as carbon substrates. J Biol Chem 285(29):22232–22243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Harada E, Iida K, Shiota S, Nakayama H, Yoshida S (2010) Glucose metabolism in Legionella pneumophila: dependence on the Entner-Doudoroff pathway and connection with intracellular bacterial growth. J Bacteriol 192(11):2892–2899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weiss E, Peacock MG, Williams JC (1980) Glucose and glutamate metabolism of Legionella pneumophila. Curr Microbiol 4:1–6

    Article  CAS  Google Scholar 

  46. Häuslein I, Manske C, Goebel W, Eisenreich W, Hilbi H (2016) Pathway analysis using (13) C-glycerol and other carbon tracers reveals a bipartite metabolism of Legionella pneumophila. Mol Microbiol 100(2):229–246

    Article  CAS  PubMed  Google Scholar 

  47. DebRoy S, Dao J, Soderberg M, Rossier O, Cianciotto NP (2006) Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc Natl Acad Sci U S A 103(50):19146–19151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pearce MM, Cianciotto NP (2009) Legionella pneumophila secretes an endoglucanase that belongs to the family-5 of glycosyl hydrolases and is dependent upon type II secretion. FEMS Microbiol Lett 300(2):256–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Herrmann V, Eidner A, Rydzewski K, Bladel I, Jules M, Buchrieser C, Eisenreich W, Heuner K (2011) GamA is a eukaryotic-like glucoamylase responsible for glycogen- and starch-degrading activity of Legionella pneumophila. Int J Med Microbiol 301(2):133–139

    Article  CAS  PubMed  Google Scholar 

  50. Otto A, Becher D, Schmidt F (2014) Quantitative proteomics in the field of microbiology. Proteomics 14(4–5):547–565

    Article  CAS  PubMed  Google Scholar 

  51. Hales LM, Shuman HA (1999) Legionella pneumophila contains a type II general secretion pathway required for growth in amoebae as well as for secretion of the Msp protease. Infect Immun 67(7):3662–3666

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Liles MR, Edelstein PH, Cianciotto NP (1999) The prepilin peptidase is required for protein secretion by and the virulence of the intracellular pathogen Legionella pneumophila. Mol Microbiol 31(3):959–970

    Article  CAS  PubMed  Google Scholar 

  53. Mampel J, Spirig T, Weber SS, Haagensen JAJ, Molin S, Hilbi H (2006) Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions. Appl Environ Microbiol 72(4):2885–2895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Horwitz MA (1983) The Legionnaires’ disease bacterium (Legionella pneumophila) inhibits lysosome-phagosome fusion in human monocytes. J Exp Med 158:2108–2126

    Article  CAS  PubMed  Google Scholar 

  55. Müller-Taubenberger A, Lupas AN, Li H, Ecke M, Simmeth E, Gerisch G (2001) Calreticulin and calnexin in the endoplasmic reticulum are important for phagocytosis. EMBO J 20(23):6772–6782

    Article  PubMed  PubMed Central  Google Scholar 

  56. Weber SS, Ragaz C, Reus K, Nyfeler Y, Hilbi H (2006) Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2(5):e46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Watts DJ, Ashworth JM (1970) Growth of myxameobae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem J 119(2):171–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Malchow D, Nagele B, Schwarz H, Gerisch G (1972) Membrane-bound cyclic AMP phosphodiesterase in chemotactically responding cells of Dictyostelium discoideum. Eur J Biochem 28(1):136–142

    Article  CAS  PubMed  Google Scholar 

  59. Ragaz C, Pietsch H, Urwyler S, Tiaden A, Weber SS, Hilbi H (2008) The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol 10(12):2416–2433

    Article  CAS  Google Scholar 

  60. Ewann F, Hoffman PS (2006) Cysteine metabolism in Legionella pneumophila: characterization of an L-cystine-utilizing mutant. Appl Environ Microbiol 72(6):3993–4000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lu H, Clarke M (2005) Dynamic properties of Legionella-containing phagosomes in Dictyostelium amoebae. Cell Microbiol 7(7):995–1007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work received financial support from the Swiss National Science Foundation (SNF; 31003A_153200), the German Research Foundation (DFG; SPP1316, SPP1617) and the “Bundesministerium für Bildung und Forschung” (BMBF; “Medical Infection Genomics” project 0315834C, and “ERA-NET Infect-ERA” EUGENPATH project 031A401A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Hilbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Manske, C., Finsel, I., Hoffmann, C., Hilbi, H. (2018). Analysis of Legionella Metabolism by Pathogen Vacuole Proteomics. In: Becher, D. (eds) Microbial Proteomics. Methods in Molecular Biology, vol 1841. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8695-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8695-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8693-4

  • Online ISBN: 978-1-4939-8695-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics