Skip to main content

Single-Molecule Measurements of Motor-Driven Viral DNA Packaging in Bacteriophages Phi29, Lambda, and T4 with Optical Tweezers

  • Protocol
  • First Online:
Molecular Motors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1805))

Abstract

Viral DNA packaging is a required step in the assembly of many dsDNA viruses. A molecular motor fueled by ATP hydrolysis packages the viral genome to near crystalline density inside a preformed prohead shell in ~5 min at room temperature. We describe procedures for measuring the packaging of single DNA molecules into single viral proheads with optical tweezers. Three viral packaging systems are described in detail: bacteriophages phi29 (φ29), lambda (λ), and T4. Two different approaches are described: (1) With φ29 and T4, prohead–motor complexes can be preassembled in bulk and packaging can be initiated in the optical tweezers by “feeding” a single DNA molecule to one of the complexes; (2) With φ29 and λ, packaging can be initiated in bulk then stalled, and a single prohead–motor–DNA complex can then be captured with optical tweezers and restarted. In both cases, the prohead is ultimately attached to one trapped microsphere and the end of the DNA being packaged is attached to a second trapped microsphere such that packaging of the DNA pulls the two microspheres together and the rate of packaging and force generated by the motor is directly measured in real time. These protocols allow for the effect of many experimental parameters on packaging dynamics to be studied such as temperature, ATP concentration, ionic conditions, structural changes to the DNA substrate, and mutations in the motor proteins. Procedures for capturing microspheres with the optical traps and different measurement modes are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Casjens SR (2011) The DNA-packaging nanomotor of tailed bacteriophages. Nat Rev Microbiol 9(9):647–657

    Article  CAS  PubMed  Google Scholar 

  2. Feiss M, Rao VB (2012) The bacteriophage DNA packaging machine. In: Rao V, Rossmann MG (eds) Viral molecular machines. Springer, New York, NY, pp 489–509

    Chapter  Google Scholar 

  3. Hetherington CL, Moffitt JR, Jardine PJ, Bustamante C (2012) Comprehensive biophysics, vol 4. Academic Press, New York, NY, pp 420–446

    Book  Google Scholar 

  4. Catalano CEE (2005) Viral genome packaging machines: genetics, structure, and mechanism. Kluwer Academic/Plenum Press, New York, NY

    Book  Google Scholar 

  5. Purohit PK et al (2005) Forces during bacteriophage DNA packaging and ejection. Biophys J 88(2):851–866

    Article  CAS  PubMed  Google Scholar 

  6. Petrov AS, Harvey SC (2007) Structural and thermodynamic principles of viral packaging. Structure 15(1):21–27

    Article  CAS  PubMed  Google Scholar 

  7. Forrey C, Muthukumar M (2006) Langevin dynamics simulations of genome packing in bacteriophage. Biophys J 91(1):25–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kindt J, Tzlil S, Ben-Shaul A, Gelbart WM (2001) DNA packaging and ejection forces in bacteriophage. Proc Natl Acad Sci U S A 98(24):13671–13674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tzlil S, Kindt JT, Gelbart WM, Ben-Shaul A (2003) Forces and pressures in DNA packaging and release from viral capsids. Biophys J 84(3):1616–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Petrov AS, Lim-Hing K, Harvey SC (2007) Packaging of DNA by bacteriophage Epsilon15: structure, forces, and thermodynamics. Structure 15(7):807–812

    Article  CAS  PubMed  Google Scholar 

  11. Grimes S, Anderson D (1989) In vitro packaging of bacteriophage phi 29 DNA restriction fragments and the role of the terminal protein gp3. J Mol Biol 209(1):91–100

    Article  CAS  PubMed  Google Scholar 

  12. Hwang Y, Feiss M (1995) A defined system for in-vitro lambda-dna packaging. Virology 211(2):367–376

    Article  CAS  PubMed  Google Scholar 

  13. Kondabagil KR, Zhang Z, Rao VB (2006) The DNA translocating ATPase of bacteriophage T4 packaging motor. J Mol Biol 363(4):486–499

    Article  CAS  Google Scholar 

  14. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75(9):2787–2809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228

    Article  CAS  PubMed  Google Scholar 

  16. Rickgauer JP, Smith DE (2008) Single-molecule studies of DNA visualization and manipulation of individual DNA molecules with fluorescence microscopy and optical tweezers. In: Borsali R, Pecora R (eds) Soft matter: scattering, imaging and manipulation, vol 4. Springer, New York, NY

    Google Scholar 

  17. Smith DE et al (2001) The bacteriophage phi29 portal motor can package DNA against a large internal force. Nature 413(6857):748–752

    Article  CAS  PubMed  Google Scholar 

  18. Fuller DN et al (2007) Measurements of single DNA molecule packaging dynamics in bacteriophage lambda reveal high forces, high motor processivity, and capsid transformations. J Mol Biol 373(5):1113–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fuller DN, Raymer DM, Kottadiel VI, Rao VB, Smith DE (2007) Single phage T4 DNA packaging motors exhibit large force generation, high velocity, and dynamic variability. Proc Natl Acad Sci U S A 104(43):16868–16873

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chemla YR, Smith DE (2012) Single-molecule studies of viral DNA packaging. In: Rao V, Rossmann MG (eds) Viral molecular machines. Springer, New York, NY, pp 549–584

    Chapter  Google Scholar 

  21. Rickgauer JP et al (2008) Portal motor velocity and internal force resisting viral DNA packaging in bacteriophage phi29. Biophys J 94(1):159–167

    Article  CAS  PubMed  Google Scholar 

  22. Chemla YR et al (2005) Mechanism of force generation of a viral DNA packaging motor. Cell 122(5):683–692

    Article  CAS  PubMed  Google Scholar 

  23. Fuller DN et al (2007) Ionic effects on viral DNA packaging and portal motor function in bacteriophage phi 29. Proc Natl Acad Sci U S A 104(27):11245–11250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moffitt JR et al (2009) Intersubunit coordination in a homomeric ring ATPase. Nature 457(7228):446–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tsay JM, Sippy J, Feiss M, Smith DE (2009) The Q motif of a viral packaging motor governs its force generation and communicates ATP recognition to DNA interaction. Proc Natl Acad Sci U S A 106(34):14355–14360

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tsay JM et al (2010) Mutations altering a structurally conserved loop-helix-loop region of a viral packaging motor change DNA translocation velocity and processivity. J Biol Chem 285(31):24282–24289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chistol G et al (2012) High degree of coordination and division of labor among subunits in a homomeric ring ATPase. Cell 151(5):1017–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu S et al (2014) A Viral packaging motor varies its DNA rotation and step size to preserve subunit coordination as the capsid fills. Cell 157:702–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Migliori AD et al (2014) Evidence for an electrostatic mechanism of force generation by the bacteriophage T4 DNA packaging motor. Nat Commun 5:4173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Migliori AD, Smith DE, Arya G (2014) Molecular interactions and residues involved in force generation in the T4 viral DNA packaging motor. J Mol Biol 426(24):4002–4017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Berndsen ZT, Keller N, Grimes S, Jardine PJ, Smith DE (2014) Nonequilibrium dynamics and ultraslow relaxation of confined DNA during viral packaging. Proc Natl Acad Sci U S A 111:8345–8350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berndsen ZT, Keller N, Smith DE (2015) Continuous allosteric regulation of a viral packaging motor by a sensor that detects the density and conformation of packaged DNA. Biophys J 108(2):315–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Keller N, Grimes S, Jardine PJ, Smith DE (2014) Repulsive DNA-DNA interactions accelerate viral DNA packaging in phage phi29. Phys Rev Lett 112(24):248101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rickgauer JP, Fuller DN, Smith DE (2006) DNA as a metrology standard for length and force measurements with optical tweezers. Biophys J 91(11):4253–4257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. delToro D, Smith DE (2014) Accurate measurement of force and displacement with optical tweezers using DNA molecules as metrology standards. Appl Phys Lett 104(14):143701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Robertson RM, Smith DE (2007) Direct measurement of the intermolecular forces confining a single molecule in an entangled polymer solution. Phys Rev Lett 99(12):126001

    Article  CAS  PubMed  Google Scholar 

  37. Cao S et al (2014) Insights into the structure and assembly of the bacteriophage 29 double-stranded DNA packaging motor. J Virol 88(8):3986–3996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kamtekar S et al (2006) The phi29 DNA polymerase:protein-primer structure suggests a model for the initiation to elongation transition. EMBO J 25(6):1335–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fuller DN et al (2006) A general method for manipulating DNA sequences from any organism with optical tweezers. Nucleic Acids Res 34(2):e15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Black LW, Rao VB (2012) Structure, assembly, and DNA packaging of the bacteriophage T4 head. Adv Virus Res 82:119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dokland T, Murialdo H (1993) Structural transitions during maturation of bacteriophage lambda capsids. J Mol Biol 233(4):682–694

    Article  CAS  PubMed  Google Scholar 

  42. Feiss M, Catalano C (2005) Bacteriophage lambda terminase and the mechanism of viral DNA packaging. In: Catalano C (ed) Viral genome packaging machines: genetics, structure and mechanism. Landes Bioscience, Georgetown

    Google Scholar 

  43. delToro D (2015) Doctoral dissertation. University of California San Diego

    Google Scholar 

  44. Smith SB, Cui Y, Bustamante C (2003) Optical-trap force transducer that operates by direct measurement of light momentum. Methods Enzymol 361:134

    Article  CAS  PubMed  Google Scholar 

  45. Zhao W, Morais MC, Anderson DL, Jardine PJ, Grimes S (2008) Role of the CCA bulge of prohead RNA of bacteriophage ø29 in DNA packaging. J Mol Biol 383(3):520–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grimes S, Anderson D (1997) The bacteriophage phi29 packaging proteins supercoil the DNA ends. J Mol Biol 266(5):901–914

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dwight Anderson, Carlos Bustamante, Carlos Catalano, Yann Chemla, Michael Feiss, Derek Fuller, Shelley Grimes, Paul Jardine, Vishal Kottadiel, Shixin Liu, Jeff Moffitt, Mariam Ordyan, Venigalla Rao, John Peter Rickgauer, Jean Sippy, Steven Smith, Sander Tans, and James Tsay for assistance. This work was supported, in part, by NSF awards PHY-0848905 and MCB-1158328 and NIH award R01-GM088186.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas E. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Keller, N., delToro, D.J., Smith, D.E. (2018). Single-Molecule Measurements of Motor-Driven Viral DNA Packaging in Bacteriophages Phi29, Lambda, and T4 with Optical Tweezers. In: Lavelle, C. (eds) Molecular Motors. Methods in Molecular Biology, vol 1805. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8556-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8556-2_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8554-8

  • Online ISBN: 978-1-4939-8556-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics