Skip to main content

Determining Stable Single Alpha Helical (SAH) Domain Properties by Circular Dichroism and Atomic Force Microscopy

  • Protocol
  • First Online:
Molecular Motors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1805))

Abstract

Stable, single α-helical (SAH) domains exist in a number of unconventional myosin isoforms, as well as other proteins. These domains are formed from sequences rich in charged residues (Arg, Lys, and Glu), they can be hundreds of residues long, and in isolation they can tolerate significant changes in pH and salt concentration without loss in helicity. Here we describe methods for the preparation and purification of SAH domains and SAH domain-containing constructs, using the myosin 10 SAH domain as an example. We go on to describe the use of circular dichroism spectroscopy and force spectroscopy with the atomic force microscope for the elucidation of structural and mechanical properties of these unusual helical species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Knight PJ, Thirumurugan K, Xu Y, Wang F, Kalverda AP, Stafford WF III, Sellers JR, Peckham M, (2005) The Predicted Coiled-coil Domain of Myosin 10 Forms a Novel Elongated Domain That Lengthens the Head. J Biol Chem 280:34702–34708

    Article  CAS  PubMed  Google Scholar 

  2. Spink BJ, Sivaramakrishnan S, Lipfert J, Doniach S, Spudich JA (2008) Long single alpha-helical tail domains bridge the gap between structure and function of myosin VI. Nat Struct Mol Biol 15:591–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baboolal TG, Sakamoto T, Forgacs E, White HD, Jackson SM, Takagi Y, Farrow RE, Molloy JE, Knight PJ, Sellers JR, Peckham M (2009) The SAH domain extends the functional length of the myosin lever. Proc Natl Acad Sci U S A 106:22193–22198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li J, Chen Y, Deng Y, Unarta IC, Lu Q, Huang X, Zhang M (2017) Ca2+-induced rigidity change of the myosin VIIa IQ motif-single α helix lever arm extension. Structure 25:579–591

    Google Scholar 

  5. Yang Y, Baboolal TG, Siththanandan V, Chen M, Walker ML, Knight PJ, Peckham M, Sellers JR (2009) A FERM domain autoregulates Drosophila myosin 7a activity. Proc Natl Acad Sci U S A 106:4189–4194

    Article  PubMed  PubMed Central  Google Scholar 

  6. Peckham M, Knight PJ (2009) When a predicted coiled coil is really a single α-helix, in myosins and other proteins. Soft Matter 5:2493–2503

    CAS  Google Scholar 

  7. Wolny M, Batchelor M, Knight PJ, Paci E, Dougan L, Peckham M (2014) Stable single α-helices are constant force springs in proteins. J Biol Chem 289:27825–27835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang CL, Chalovich JM, Graceffa P, Lu RC, Mabuchi K, Stafford W (1991) A long helix from the central region of smooth muscle caldesmon. J Biol Chem 266:13958–13963

    Google Scholar 

  9. Sivaramakrishnan S, Sung J, Ali M, Doniach S, Flyvbjerg H, Spudich JA (2009) Combining single-molecule optical trapping and small-angle X-ray scattering measurements to compute the persistence length of a protein ER/K α-helix. Biophys J 97:2993–2999

    Google Scholar 

  10. Samejima K, Platani M, Wolny M, Ogawa H, Vargiu G, Knight PJ, Peckham M, Earnshaw WC (2015) The inner centromere protein (INCENP) coil is a single α-helix (SAH) domain that binds directly to microtubules and is important for chromosome passenger complex (CPC) localization and function in mitosis. J Biol Chem 290:21460–21472

    Google Scholar 

  11. Wolny M, Batchelor M, Bartlett GJ, Baker EG, Kurzawa M, Knight PJ, Dougan L, Woolfson DN, Paci E, Peckham M (2017) Characterization of long and stable de novo single alpha-helix domains provides novel insight into their stability. Sci Rep 7:44341

    Google Scholar 

  12. Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Greenfield NJ (2006) Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc 1:2527–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wolny M, Colegrave M, Colman L, White E, Knight PJ, Peckham M (2013) Cardiomyopathy mutations in the tail of β-cardiac myosin modify the coiled-coil structure and affect integration into thick filaments in muscle sarcomeres in adult cardiomyocytes. J Biol Chem 288:31952–31962

    Google Scholar 

  15. Mitsui K, Hara M, Ikai A (1996) Mechanical unfolding of α2-macroglobulin molecules with atomic force microscope. FEBS Lett 385:29–33

    Article  CAS  PubMed  Google Scholar 

  16. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112

    Article  CAS  PubMed  Google Scholar 

  17. Hoffmann T, Dougan L (2012) Single molecule force spectroscopy using polyproteins. Chem Soc Rev 41:4781–4796

    Article  CAS  PubMed  Google Scholar 

  18. Best RB, Li B, Steward A, Daggett V, Clarke J (2001) Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation. Biophys J 81:2344–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li H, Oberhauser AF, Redick SD, Carrion-Vazquez M, Erickson HP, Fernandez JM (2001) Multiple conformations of PEVK proteins detected by single-molecule techniques. Proc Natl Acad Sci U S A 98:10682–10686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oroz J, Hervas R, Valbuena A, Carrion-Vazquez M (2012) Unequivocal single-molecule force spectroscopy of intrinsically disordered proteins. Methods Mol Biol 896:71–87

    PubMed  CAS  Google Scholar 

  21. Tskhovrebova L, Trinick J, Sleep JA, Simmons RM (1997) Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387:308–312

    Article  CAS  PubMed  Google Scholar 

  22. Carrion-Vazquez M, Oberhauser AF, Fowler SB, Marszalek PE, Broedel SE, Clarke J, Fernandez JM (1999) Mechanical and chemical unfolding of a single protein: a comparison. Proc Natl Acad Sci U S A 96:3694–3699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Improta S, Politou AS, Pastore A (1996) Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Structure 4:323–337

    Article  CAS  PubMed  Google Scholar 

  24. Brockwell DJ, Beddard GS, Clarkson J, Zinober RC, Blake AW, Trinick J, Olmsted PD, Smith DA, Radford SE (2002) The effect of core destabilization on the mechanical resistance of I27. Biophys J 83:458–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Muller S, Hoege C, Pyrowolakis G, Jentsch S (2001) SUMO, ubiquitin’s mysterious cousin. Nat Rev Mol Cell Biol 2:202–210

    Article  CAS  PubMed  Google Scholar 

  26. Zinober RC, Brockwell DJ, Beddard GS, Blake AW, Olmsted PD, Radford SE, Smith DA (2002) Mechanically unfolding proteins: the effect of unfolding history and the supramolecular scaffold. Protein Sci 11:2759–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lobley A, Whitmore L, Wallace BA (2002) DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics 18:211–212

    Article  CAS  PubMed  Google Scholar 

  28. Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32:W668–W673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751:119–139

    Article  CAS  PubMed  Google Scholar 

  30. Greenfield N, Fasman GD (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8:4108–4116

    Article  CAS  PubMed  Google Scholar 

  31. Chen YH, Yang JT, Chau KH (1974) Determination of the helix and β form of proteins in aqueous solution by circular dichroism. Biochemistry 13:3350–3359

    Article  CAS  PubMed  Google Scholar 

  32. Woody RW (1995) Circular dichroism. Methods Enzymol 246:34–71

    Article  CAS  PubMed  Google Scholar 

  33. Law R, Carl P, Harper S, Dalhaimer P, Speicher DW, Discher DE (2003) Cooperativity in forced unfolding of tandem spectrin repeats. Biophys J 84:533–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hutter J, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868–1873

    Article  CAS  Google Scholar 

  35. Cappella B, Dietler G (1999) Force-distance curves by atomic force microscopy. Surf Sci Rep 34:1–104

    Article  CAS  Google Scholar 

  36. Rounsevell R, Forman JR, Clarke J (2004) Atomic force microscopy: mechanical unfolding of proteins. Methods 34:100–111

    Article  CAS  PubMed  Google Scholar 

  37. Zocher M, Zhang C, Rasmussen SG, Kobilka BK, Muller DJ (2012) Cholesterol increases kinetic, energetic, and mechanical stability of the human β2-adrenergic receptor. Proc Natl Acad Sci U S A 109:E3463–E3472

    Article  PubMed  PubMed Central  Google Scholar 

  38. Leitner M, Fantner GE, Fantner EJ, Ivanova K, Ivanov T, Rangelow I, Ebner A, Rangl M, Tang J, Hinterdorfer P (2012) Increased imaging speed and force sensitivity for bio-applications with small cantilevers using a conventional AFM setup. Micron 43:1399–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Berkemeier F, Bertz M, Xiao S, Pinotsis N, Wilmanns M, Grater F, Rief M (2011) Fast-folding α-helices as reversible strain absorbers in the muscle protein myomesin. Proc Natl Acad Sci U S A 108:14139–14144

    Article  PubMed  PubMed Central  Google Scholar 

  40. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  41. Edelhoch H (1967) Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6:1948–1954

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Biotechnology and Biological Sciences Research Council grants BB/I007423/1 and BB/M009114/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Peckham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Batchelor, M., Wolny, M., Kurzawa, M., Dougan, L., Knight, P.J., Peckham, M. (2018). Determining Stable Single Alpha Helical (SAH) Domain Properties by Circular Dichroism and Atomic Force Microscopy. In: Lavelle, C. (eds) Molecular Motors. Methods in Molecular Biology, vol 1805. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8556-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8556-2_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8554-8

  • Online ISBN: 978-1-4939-8556-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics