Skip to main content

Chemical and Physicochemical Properties of Gangliosides

  • Protocol
  • First Online:
Gangliosides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1804))

Abstract

In this chapter, we briefly describe the structural features of gangliosides, and focus on the peculiar chemicophysical features of gangliosides, an important class of membrane amphipathic lipids that represent an important driving force determining the organization and properties of cellular membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carter HE, Glick FJ, Norris WP, Phillips GE (1947) Biochemistry of the sphingolipides: III. Structure of sphingosine. J Biol Chem 170(1):285–294

    CAS  Google Scholar 

  2. Klenk E, Faillard H, Lempfrid H (1955) Enzymatic effect of the influenza virus. Hoppe Seylers Z Physiol Chem 301(4-6):235–246

    Article  PubMed  CAS  Google Scholar 

  3. Kuhn R, Wiegandt H (1963) The constitution of gangliosides G-Ii, G-Iii and G-Iv. Z Naturforsch B 18:541–543

    Article  PubMed  CAS  Google Scholar 

  4. Colsch B, Jackson SN, Dutta S, Woods AS (2011) Molecular microscopy of brain gangliosides: illustrating their distribution in hippocampal cell layers. ACS Chem Nerosci 2(4):213–222. https://doi.org/10.1021/cn100096h

    Article  CAS  Google Scholar 

  5. Hirano-Sakamaki W, Sugiyama E, Hayasaka T, Ravid R, Setou M, Taki T (2015) Alzheimer’s disease is associated with disordered localization of ganglioside GM1 molecular species in the human dentate gyrus. FEBS Lett 589(23):3611–3616. https://doi.org/10.1016/j.febslet.2015.09.033. S0014-5793(15)00933-3 [pii]

    Article  PubMed  CAS  Google Scholar 

  6. Go S, Go S, Veillon L, Ciampa MG, Mauri L, Sato C, Kitajima K, Prinetti A, Sonnino S, Inokuchi JI (2017) Altered expression of ganglioside GM3 molecular species and a potential regulatory role during myoblast differentiation. J Biol Chem 292(17):7040–7051. https://doi.org/10.1074/jbc.M116.771253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Veillon L, Go S, Matsuyama W, Suzuki A, Nagasaki M, Yatomi Y, Inokuchi J (2015) Identification of Ganglioside GM3 Molecular Species in Human Serum Associated with Risk Factors of Metabolic Syndrome. PLoS One 10(6):e0129645. https://doi.org/10.1371/journal.pone.0129645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Roisen FJ, Bartfeld H, Nagele R, Yorke G (1981) Ganglioside stimulation of axonal sprouting in vitro. Science 214(4520):577–578

    Article  PubMed  CAS  Google Scholar 

  9. Sonnino S, Chigorno V (2000) Ganglioside molecular species containing C18- and C20-sphingosine in mammalian nervous tissues and neuronal cell cultures. Biochim Biophys Acta 1469(2):63–77. doi:S0005-2736(00)00210-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  10. Sastry PS (1985) Lipids of nervous tissue: composition and metabolism. Prog Lipid Res 24(2):69–176. doi:0163-7827(85)90011-6 [pii]

    Article  PubMed  CAS  Google Scholar 

  11. Riboni L, Acquotti D, Casellato R, Ghidoni R, Montagnolo G, Benevento A, Zecca L, Rubino F, Sonnino S (1992) Changes of the human liver GM3 ganglioside molecular species during aging. Eur J Biochem 203(1-2):107–113

    Article  PubMed  CAS  Google Scholar 

  12. Farooqui AA (1981) Metabolism of sulfolipids in mammalian tissues. Adv Lipid Res 18:159–202

    Article  PubMed  CAS  Google Scholar 

  13. Yu RK, Ledeen RW (1972) Gangliosides of human, bovine, and rabbit plasma. J Lipid Res 13(5):680–686

    PubMed  CAS  Google Scholar 

  14. Kamerling JP, Vliegenthart JF (1975) Isolation and identification of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid from the urine of a patient with sialuria. Eur J Biochem 56(1):253–258

    Article  PubMed  CAS  Google Scholar 

  15. Ghidoni R, Sonnino S, Tettamanti G, Baumann N, Reuter G, Schauer R (1980) Isolation and characterization of a trisialoganglioside from mouse brain, containing 9-O-acetyl-N-acetylneuraminic acid. J Biol Chem 255(14):6990–6995

    PubMed  CAS  Google Scholar 

  16. Chigorno V, Sonnino S, Ghidoni R, Tettamanti G (1982) Isolation and characterization of a tetrasialoganglioside from mouse brain, containing 9-O-acetyl,N-acetylneuraminic acid. Neurochem Int 4(6):531–539. doi:0197-0186(82)90042-0 [pii]

    Article  PubMed  CAS  Google Scholar 

  17. Glebov OO, Nichols BJ (2004) Lipid raft proteins have a random distribution during localized activation of the T-cell receptor. Nat Cell Biol 6(3):238–243

    Article  PubMed  CAS  Google Scholar 

  18. Lin J, Shaw AS (2005) Getting downstream without a Raft. Cell 121(6):815–816

    Article  PubMed  CAS  Google Scholar 

  19. Karlsson KA (1970) On the chemistry and occurrence of sphingolipid long-chain bases. Chem Phys Lipids 5(1):6–43

    Article  PubMed  CAS  Google Scholar 

  20. Okerblom J, Varki A (2017) Biochemical, cellular, physiological and pathological consequences of human loss of N-glycolylneuraminic acid. Chembiochem. https://doi.org/10.1002/cbic.201700077

  21. Marquina G, Waki H, Fernandez LE, Kon K, Carr A, Valiente O, Perez R, Ando S (1996) Gangliosides expressed in human breast cancer. Cancer Res 56(22):5165–5171

    PubMed  CAS  Google Scholar 

  22. Riboni L, Sonnino S, Acquotti D, Malesci A, Ghidoni R, Egge H, Mingrino S, Tettamanti G (1986) Natural occurrence of ganglioside lactones. Isolation and characterization of GD1b inner ester from adult human brain. J Biol Chem 261(18):8514–8519

    CAS  PubMed  Google Scholar 

  23. Avrova NF, Ghidoni R, Karpova OB, Nalivayeva NN, Malesci A, Tettamanti G (1986) Systematic position of fish species and ganglioside composition and content. Comp Biochem Physiol B 83(3):669–676

    Article  PubMed  CAS  Google Scholar 

  24. Terabayashi T, Kawanishi Y (1998) Naturally occurring ganglioside lactones in Minke whale brain. Carbohydr Res 307(3-4):281–290

    Article  PubMed  CAS  Google Scholar 

  25. Song Y, Kitajima K, Inoue S, Khoo KH, Morris HR, Dell A, Inoue Y (1995) Expression of new KDN-gangliosides in rainbow trout testis during spermatogenesis and their structural identification. Glycobiology 5(2):207–218

    Article  PubMed  CAS  Google Scholar 

  26. Sonnino S, Prinetti A, Mauri L, Chigorno V, Tettamanti G (2006) Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chem Rev 106(6):2111–2125. https://doi.org/10.1021/cr0100446

    Article  PubMed  CAS  Google Scholar 

  27. Sonnino S, Kirschner G, Ghidoni R, Acquotti D, Tettamanti G (1985) Preparation of GM1 ganglioside molecular species having homogeneous fatty acid and long chain base moieties. J Lipid Res 26(2):248–257

    PubMed  CAS  Google Scholar 

  28. Masserini M, Freire E (1986) Thermotropic characterization of phosphatidylcholine vesicles containing ganglioside GM1 with homogeneous ceramide chain length. Biochemistry 25(5):1043–1049

    Article  PubMed  CAS  Google Scholar 

  29. Masserini M, Palestini P, Venerando B, Fiorilli A, Acquotti D, Tettamanti G (1988) Interactions of proteins with ganglioside-enriched microdomains on the membrane: the lateral phase separation of molecular species of GD1a ganglioside, having homogeneous long-chain base composition, is recognized by Vibrio cholerae sialidase. Biochemistry 27(20):7973–7978

    Article  PubMed  CAS  Google Scholar 

  30. Masserini M, Palestini P, Freire E (1989) Influence of glycolipid oligosaccharide and long-chain base composition on the thermotropic properties of dipalmitoylphosphatidylcholine large unilamellar vesicles containing gangliosides. Biochemistry 28(12):5029–5034

    Article  PubMed  CAS  Google Scholar 

  31. Terzaghi A, Tettamanti G, Masserini M (1993) Interaction of glycosphingolipids and glycoproteins: thermotropic properties of model membranes containing GM1 ganglioside and glycophorin. Biochemistry 32(37):9722–9725

    Article  PubMed  CAS  Google Scholar 

  32. Palestini P, Allietta M, Sonnino S, Tettamanti G, Thompson TE, Tillack TW (1995) Gel phase preference of ganglioside GM1 at low concentration in two-component, two-phase phosphatidylcholine bilayers depends upon the ceramide moiety. Biochim Biophys Acta 1235(2):221–230. doi:0005-2736(95)80008-4 [pii]

    Article  PubMed  Google Scholar 

  33. Goins B, Masserini M, Barisas BG, Freire E (1986) Lateral diffusion of ganglioside GM1 in phospholipid bilayer membranes. Biophys J 49(4):849–856. https://doi.org/10.1016/S0006-3495(86)83714-6. S0006-3495(86)83714-6 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Palestini P, Masserini M, Tettamanti G (1994) Exposure to galactose oxidase of GM1 ganglioside molecular species embedded into phospholipid vesicles. FEBS Lett 350(2-3):219–222. doi:0014-5793(94)00765-9 [pii]

    Article  PubMed  CAS  Google Scholar 

  35. Ferraretto A, Pitto M, Palestini P, Masserini M (1997) Lipid domains in the membrane: thermotropic properties of sphingomyelin vesicles containing GM1 ganglioside and cholesterol. Biochemistry 36(30):9232–9236. https://doi.org/10.1021/bi970428j. bi970428j [pii]

    Article  PubMed  CAS  Google Scholar 

  36. Acquotti D, Poppe L, Dabrowski J, Vonderlieth CW, Sonnino S, Tettamanti G (1990) 3-Dimensional structure of the oligosaccharide chain of Gm1 ganglioside revealed by a distance-mapping procedure – a rotating and laboratory frame nuclear overhauser enhancement investigation of native glycolipid in dimethyl-sulfoxide and in water dodecylphosphocholine solutions. J Am Chem Soc 112(21):7772–7778. https://doi.org/10.1021/Ja00177a043

    Article  CAS  Google Scholar 

  37. Siebert HC, Reuter G, Schauer R, von der Lieth CW, Dabrowski J (1992) Solution conformations of GM3 gangliosides containing different sialic acid residues as revealed by NOE-based distance mapping, molecular mechanics, and molecular dynamics calculations. Biochemistry 31(30):6962–6971

    Article  PubMed  CAS  Google Scholar 

  38. Poppe L, van Halbeek H, Acquotti D, Sonnino S (1994) Carbohydrate dynamics at a micellar surface: GD1a headgroup transformations revealed by NMR spectroscopy. Biophys J 66 (5):1642-1652. doi:https://doi.org/10.1016/S0006-3495(94)80956-7. S0006-3495(94)80956-7 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Jarrell HC, Jovall PA, Giziewicz JB, Turner LA, Smith IC (1987) Determination of conformational properties of glycolipid head groups by 2H NMR of oriented multibilayers. Biochemistry 26(7):1805–1811

    Article  PubMed  CAS  Google Scholar 

  40. Skarjune R, Oldfield E (1982) Physical studies of cell surface and cell membrane structure. Deuterium nuclear magnetic resonance studies of N-palmitoylglucosylceramide (cerebroside) head group structure. Biochemistry 21(13):3154–3160

    Article  PubMed  CAS  Google Scholar 

  41. Nyholm PG, Pascher I (1993) Orientation of the saccharide chains of glycolipids at the membrane surface: conformational analysis of the glucose-ceramide and the glucose-glyceride linkages using molecular mechanics (MM3). Biochemistry 32(5):1225–1234

    Article  PubMed  CAS  Google Scholar 

  42. Brocca P, Berthault P, Sonnino S (1998) Conformation of the oligosaccharide chain of G(M1) ganglioside in a carbohydrate-enriched surface. Biophys J 74(1):309–318. https://doi.org/10.1016/S0006-3495(98)77788-4. S0006-3495(98)77788-4 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Brocca P, Acquotti D, Sonnino S (1996) Nuclear overhauser effect investigation on GM1 ganglioside containing N-glycolyl-neuraminic acid (II3Neu5GcGgOse4Cer). Glycoconj J 13(1):57–62

    Article  PubMed  CAS  Google Scholar 

  44. Acquotti D, Cantu L, Ragg E, Sonnino S (1994) Geometrical and conformational properties of ganglioside GalNAc-GD1a, IV4GalNAcIV3Neu5AcII3Neu5AcGgOse4Cer. Eur J Biochem 225(1):271–288

    Article  PubMed  CAS  Google Scholar 

  45. Christian R, Schulz G, Brandstetter HH, Zbiral E (1987) On the side-chain conformation of N-acetylneuraminic acid and its epimers at C-7, C-8, and C-7,8. Carbohydr Res 162(1):1–11. doi:0008-6215(87)80195-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  46. Poppe L, Dabrowski J, von der Lieth CW, Numata M, Ogawa T (1989) Solution conformation of sialosylcerebroside (GM4) and its NeuAc(alpha 2–3)Gal beta sugar component. Eur J Biochem 180(2):337–342

    Article  PubMed  CAS  Google Scholar 

  47. Brocca P, Acquotti D, Sonnino S (1993) 1H-NMR study on ganglioside amide protons: evidence that the deuterium exchange kinetics are affected by the preparation of samples. Glycoconj J 10(6):441–446

    Article  PubMed  CAS  Google Scholar 

  48. Acquotti D, Fronza G, Ragg E, Sonnino S (1991) Three dimensional structure of GD1b and GD1b-monolactone gangliosides in dimethylsulphoxide: a nuclear Overhauser effect investigation supported by molecular dynamics calculations. Chem Phys Lipids 59(2):107–125. doi:0009-3084(91)90001-R [pii]

    Article  PubMed  CAS  Google Scholar 

  49. Ha JH, Spolar RS, Record MT Jr (1989) Role of the hydrophobic effect in stability of site-specific protein-DNA complexes. J Mol Biol 209(4):801–816. doi:0022-2836(89)90608-6 [pii]

    Article  PubMed  CAS  Google Scholar 

  50. Bach D, Sela B, Miller IR (1982) Compositional aspects of lipid hydration. Chem Phys Lipids 31(4):381–394

    Article  PubMed  CAS  Google Scholar 

  51. Cantu L, Corti M, Sonnino S, Tettamanti G (1990) Evidence for spontaneous segregation phenomena in mixed micelles of gangliosides. Chem Phys Lipids 55(3):223–229

    Article  PubMed  CAS  Google Scholar 

  52. Regina Todeschini A, Hakomori SI (2008) Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta 1780(3):421–433. https://doi.org/10.1016/j.bbagen.2007.10.008. S0304-4165(07)00240-1 [pii]

    Article  PubMed  CAS  Google Scholar 

  53. Sonnino S, Prinetti A (2013) Membrane domains and the “lipid raft” concept. Curr Med Chem 20(1):4–21. doi:CMC-EPUB-20121108-2 [pii]

    PubMed  CAS  Google Scholar 

  54. Cantu L, Del Favero E, Sonnino S, Prinetti A (2011) Gangliosides and the multiscale modulation of membrane structure. Chem Phys Lipids 164(8):796-810. doi:https://doi.org/10.1016/j.chemphyslip.2011.09.005. S0009-3084(11)00330-6 [pii]

    Article  PubMed  Google Scholar 

  55. Prinetti A, Chigorno V, Prioni S, Loberto N, Marano N, Tettamanti G, Sonnino S (2001) Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J Biol Chem 276(24):21136–21145. https://doi.org/10.1074/jbc.M010666200. M010666200 [pii]

    Article  PubMed  CAS  Google Scholar 

  56. Pitto M, Parenti M, Guzzi F, Magni F, Palestini P, Ravasi D, Masserini M (2002) Palmitic is the main fatty acid carried by lipids of detergent-resistant membrane fractions from neural and non-neural cells. Neurochem Res 27(7-8):729–734

    Article  PubMed  CAS  Google Scholar 

  57. Sonnino S, Prinetti A (2010) Lipids and membrane lateral organization. Front Physiol 1:153. https://doi.org/10.3389/fphys.2010.00153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sonnino S, Prinetti A (2008) Membrane lipid domains and membrane lipid domain preparations: are they the same thing? Trends Glycosci Glycotechnol 20(116):315–340. https://doi.org/10.4052/Tigg.20.315

    Article  CAS  Google Scholar 

  59. Bertoli E, Masserini M, Sonnino S, Ghidoni R, Cestaro B, Tettamanti G (1981) Electron paramagnetic resonance studies on the fluidity and surface dynamics of egg phosphatidylcholine vesicles containing gangliosides. Biochim Biophys Acta 647(2):196–202

    Article  PubMed  CAS  Google Scholar 

  60. Maggio B, Ariga T, Sturtevant JM, Yu RK (1985) Thermotropic behavior of glycosphingolipids in aqueous dispersions. Biochemistry 24(5):1084–1092

    Article  PubMed  CAS  Google Scholar 

  61. Cantu L, Corti M, Del Favero E, Muller E, Raudino A, Sonnino S (1999) Thermal hysteresis in ganglioside micelles investigated by differential scanning calorimetry and light-scattering. Langmuir 15(15):4975–4980. https://doi.org/10.1021/La981355n

    Article  CAS  Google Scholar 

  62. Koynova R, Caffrey M (1995) Phases and phase transitions of the sphingolipids. Biochim Biophys Acta 1255(3):213–236

    Article  PubMed  Google Scholar 

  63. Ostermeyer AG, Beckrich BT, Ivarson KA, Grove KE, Brown DA (1999) Glycosphingolipids are not essential for formation of detergent-resistant membrane rafts in melanoma cells. Methyl-beta-cyclodextrin does not affect cell surface transport of a GPI-anchored protein. J Biol Chem 274(48):34459–34466

    Article  PubMed  CAS  Google Scholar 

  64. Iwabuchi K, Yamamura S, Prinetti A, Handa K, Hakomori S (1998) GM3-enriched microdomain involved in cell adhesion and signal transduction through carbohydrate-carbohydrate interaction in mouse melanoma B16 cells. J Biol Chem 273(15):9130–9138

    Article  PubMed  CAS  Google Scholar 

  65. Chigorno V, Palestini P, Sciannamblo M, Dolo V, Pavan A, Tettamanti G, Sonnino S (2000) Evidence that ganglioside enriched domains are distinct from caveolae in MDCK II and human fibroblast cells in culture. Eur J Biochem 267(13):4187–4197. doi:ejb1454 [pii]

    Article  PubMed  CAS  Google Scholar 

  66. Pascher I (1976) Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim Biophys Acta 455(2):433–451. doi:0005-2736(76)90316-3 [pii]

    Article  PubMed  CAS  Google Scholar 

  67. Hakomori S, Handa K, Iwabuchi K, Yamamura S, Prinetti A (1998) New insights in glycosphingolipid function: “glycosignaling domain,” a cell surface assembly of glycosphingolipids with signal transducer molecules, involved in cell adhesion coupled with signaling. Glycobiology 8(10):xi–xix

    Article  PubMed  CAS  Google Scholar 

  68. Sonnino S, Aureli M, Loberto N, Chigorno V, Prinetti AFine tuning of cell functions through remodeling of glycosphingolipids by plasma membrane-associated glycohydrolases. FEBS Lett 584(9):1914–1922. https://doi.org/10.1016/j.febslet.2009.11.020. S0014-5793(09)00913-2 [pii]

  69. Svennerholm L (1980) Ganglioside designation. Adv Exp Med Biol 125:11

    Article  PubMed  CAS  Google Scholar 

  70. IUPAC-IUB Joint Commission (1999) IUPAC-IUB Joint Commission on biochemical nomenclature (JCBN) nomenclature of glycolipids recommendations 1997. J Mol Biol 286(3):963–970. doi:S0022283698924858 [pii]

    Article  Google Scholar 

  71. Sonnino S, Cantu L, Corti M, Acquotti D, Venerando B (1994) Aggregative properties of gangliosides in solution. Chem Phys Lipids 71(1):21–45. doi:0009-3084(94)02304-2 [pii]

    Article  PubMed  CAS  Google Scholar 

  72. Milhiet PE, Domec C, Giocondi MC, Van Mau N, Heitz F, Le Grimellec C (2001) Domain formation in models of the renal brush border membrane outer leaflet. Biophys J 81(1):547–555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Lawrence JC, Saslowsky DE, Edwardson JM, Henderson RM (2003) Real-time analysis of the effects of cholesterol on lipid raft behavior using atomic force microscopy. Biophys J 84(3):1827–1832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Prinetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mauri, L., Sonnino, S., Prinetti, A. (2018). Chemical and Physicochemical Properties of Gangliosides. In: Sonnino, S., Prinetti, A. (eds) Gangliosides. Methods in Molecular Biology, vol 1804. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8552-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8552-4_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8551-7

  • Online ISBN: 978-1-4939-8552-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics