Skip to main content

Role of Thyroid Hormone Receptor in Amphibian Development

  • Protocol
  • First Online:
Thyroid Hormone Nuclear Receptor

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1801))

Abstract

The amphibian Xenopus laevis has long been used as a model for studying vertebrate cell and developmental biology largely due to the easiness to manipulate this system in vivo and in vitro. While most of the developmental studies have been on Xenopus embryogenesis, considerable efforts have been made to understand its metamorphosis, a process mimicking postembryonic development in mammals when many organs mature into their adult forms in the presence of high levels of thyroid hormone (T3). Amphibian metamorphosis is totally dependent on T3 and offers a number of advantages for experimental analyses compared to the late stage, uterus-enclosed mammalian embryos. Earlier studies on metamorphosis in Xenopus laevis have revealed dual functions of T3 receptors (TR) during premetamorphic development and metamorphosis as well as important roles of TR-interacting corepressors and coactivators during these two periods, respectively. The development of gene-editing technologies that functions in amphibians in recent years has made possible for the first time to study function of endogenous TRs, especially in the highly related diploid anuran species Xenopus tropicalis. Here, we first review the current mechanistic understanding of the regulation of metamorphosis by T3 and TR, and then describe a detailed method to use TALEN to knock out TRα for studying its role in gene regulation by T3 in vivo and Xenopus development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shi Y-B (1999) Amphibian metamorphosis: from morphology to molecular biology. John Wiley & Sons, Inc., New York

    Google Scholar 

  2. Tata JR (1993) Gene expression during metamorphosis: an ideal model for post-embryonic development. BioEssays 15(4):239–248

    Article  CAS  PubMed  Google Scholar 

  3. Lazar MA (1993) Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 14(2):184–193

    PubMed  CAS  Google Scholar 

  4. Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895

    Article  CAS  PubMed  Google Scholar 

  5. Yen PM (2001) Physiological and molecular basis of thyroid hormone action. Physiol Rev 81(3):1097–1142

    Article  CAS  PubMed  Google Scholar 

  6. Davis PJ, Davis FB (1996) Nongenomic actions of thyroid hormone. Thyroid 6:497–504

    Article  CAS  PubMed  Google Scholar 

  7. Tsai MJ, O'Malley BW (1994) Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 63:451–486

    Article  CAS  PubMed  Google Scholar 

  8. Buchholz DR, Paul BD, Fu L, Shi YB (2006) Molecular and developmental analyses of thyroid hormone receptor function in Xenopus laevis, the African clawed frog. Gen Comp Endocrinol 145(1):1–19

    Article  CAS  PubMed  Google Scholar 

  9. Davis PJ, Davis FB, Cody V (2005) Membrane receptors mediating thyroid hormone action. Trends Endocrinol Metab 16(9):429–435

    Article  CAS  PubMed  Google Scholar 

  10. Shi YB, Matsuura K, Fujimoto K, Wen L, Fu L (2012) Thyroid hormone receptor actions on transcription in amphibia: the roles of histone modification and chromatin disruption. Cell Biosci 2(1):42. https://doi.org/10.1186/2045-3701-2-42. 2045-3701-2-42 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Guigon CJ, Cheng SY (2009) Novel non-genomic signaling of thyroid hormone receptors in thyroid carcinogenesis. Mol Cell Endocrinol 308(1–2):63–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hiroi Y, Kim HH, Ying H, Furuya F, Huang Z, Simoncini T, Noma K, Ueki K, Nguyen NH, Scanlan TS, Moskowitz MA, Cheng SY, Liao JK (2006) Rapid nongenomic actions of thyroid hormone. Proc Natl Acad Sci U S A 103(38):14104–14109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yaoita Y, Brown DD (1990) A correlation of thyroid hormone receptor gene expression with amphibian metamorphosis. Genes Dev 4(11):1917–1924

    Article  CAS  PubMed  Google Scholar 

  14. Wong J, Shi Y-B (1995) Coordinated regulation of and transcriptional activation by Xenopus thyroid hormone and retinoid X receptors. J Biol Chem 270:18479–18483

    Article  CAS  PubMed  Google Scholar 

  15. Wang X, Matsuda H, Shi Y-B (2008) Developmental regulation and function of thyroid hormone receptors and 9-cis retinoic acid receptors during Xenopus tropicalis metamorphosis. Endocrinology 149:5610–5618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leloup J, Buscaglia M (1977) La triiodothyronine: hormone de la métamorphose des amphibiens. CR Acad Sci 284:2261–2263

    CAS  Google Scholar 

  17. Shi Y-B, Wong J, Puzianowska-Kuznicka M, Stolow M (1996) Tadpole competence and tissue-specific temporal regulation of amphibian metamorphosis: roles of thyroid hormone and its receptors. BioEssays 18:391–399

    Article  CAS  PubMed  Google Scholar 

  18. Sachs LM, Damjanovski S, Jones PL, Li Q, Amano T, Ueda S, Shi YB, Ishizuya-Oka A (2000) Dual functions of thyroid hormone receptors during Xenopus development. Comp Biochem Physiol B Biochem Mol Biol 126(2):199–211

    Article  CAS  PubMed  Google Scholar 

  19. Puzianowska-Kuznicka M, Damjanovski S, Shi Y-B (1997) Both thyroid hormone and 9-cis retinoic acid receptors are required to efficiently mediate the effects of thyroid hormone on embryonic development and specific gene regulation in xenopus laevis. Mol Cell Biol 17:4738–4749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Amaya E, Kroll KL (1999) A method for generating transgenic frog embryos. Methods Mol Biol 97:393–414

    PubMed  CAS  Google Scholar 

  21. Nakajima K, Yaoita Y (2003) Dual mechanisms governing muscle cell death in tadpole tail during amphibian metamorphosis. Dev Dyn 227:246–255

    Article  CAS  PubMed  Google Scholar 

  22. Schreiber AM, Brown DD (2003) Tadpole skin dies autonomously in response to thyroid hormone at metamorphosis. Proc Natl Acad Sci U S A 100:1769–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Das B, Schreiber AM, Huang H, Brown DD (2002) Multiple thyroid hormone-induced muscle growth and death programs during metamorphosis in Xenopus laevis. Proc Natl Acad Sci U S A 99:12230–12235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schreiber AM, Das B, Huang H, Marsh-Armstrong N, Brown DD (2001) Diverse developmental programs of Xenopus laevis metamorphosis are inhibited by a dominant negative thyroid hormone receptor. Proc Natl Acad Sci U S A 98:10739–10744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Buchholz DR, Hsia VS-C, Fu L, Shi Y-B (2003) A dominant negative thyroid hormone receptor blocks amphibian metamorphosis by retaining corepressors at target genes. Mol Cell Biol 23:6750–6758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Buchholz DR, Tomita A, Fu L, Paul BD, Shi Y-B (2004) Transgenic analysis reveals that thyroid hormone receptor is sufficient to mediate the thyroid hormone signal in frog metamorphosis. Mol Cell Biol 24:9026–9037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hasebe T, Buchholz DR, Shi YB, Ishizuya-Oka A (2011) Epithelial-connective tissue interactions induced by thyroid hormone receptor are essential for adult stem cell development in the Xenopus laevis intestine. Stem Cells 29(1):154–161. https://doi.org/10.1002/stem.560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Guo X, Zhang T, Hu Z, Zhang Y, Shi Z, Wang Q, Cui Y, Wang F, Zhao H, Chen Y (2014) Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis. Development 141(3):707–714. https://doi.org/10.1242/dev.099853

    Article  PubMed  CAS  Google Scholar 

  29. Lei Y, Guo X, Deng Y, Chen Y, Zhao H (2013) Generation of gene disruptions by transcription activator-like effector nucleases (TALENs) in Xenopus tropicalis embryos. Cell Biosci 3(1):21. https://doi.org/10.1186/2045-3701-3-21. 2045-3701-3-21 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lei Y, Guo X, Liu Y, Cao Y, Deng Y, Chen X, Cheng CH, Dawid IB, Chen Y, Zhao H (2012) Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A 109:17484–17489. https://doi.org/10.1073/pnas.1215421109. 1215421109 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM (2013) Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 51(12):835–843. https://doi.org/10.1002/dvg.22720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Blitz IL, Biesinger J, Xie X, Cho KW (2013) Biallelic genome modification in F(0) Xenopus tropicalis embryos using the CRISPR/Cas system. Genesis 51(12):827–834. https://doi.org/10.1002/dvg.22719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wang F, Shi Z, Cui Y, Guo X, Shi YB, Chen Y (2015) Targeted gene disruption in Xenopus laevis using CRISPR/Cas9. Cell Biosci 5:15. https://doi.org/10.1186/s13578-015-0006-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yen PM (2015) Unliganded TRs regulate growth and developmental timing during early embryogenesis: evidence for a dual function mechanism of TR action. Cell Biosci 5:8. https://doi.org/10.1186/2045-3701-5-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wen L, Shi YB (2015) Unliganded thyroid hormone receptor alpha controls developmental timing in Xenopus tropicalis. Endocrinology 156:721–734. https://doi.org/10.1210/en.2014-1439

    Article  PubMed  CAS  Google Scholar 

  36. Choi J, Suzuki KI, Sakuma T, Shewade L, Yamamoto T, Buchholz DR (2015) Unliganded thyroid hormone receptor alpha regulates developmental timing via gene repression as revealed by gene disruption in Xenopus tropicalis. Endocrinology 156:735–744. https://doi.org/10.1210/en.2014-1554

    Article  PubMed  CAS  Google Scholar 

  37. Sachs LM (2015) Unliganded thyroid hormone receptor function: amphibian metamorphosis got TALENs. Endocrinology 156(2):409–410. https://doi.org/10.1210/en.2014-2016

    Article  PubMed  CAS  Google Scholar 

  38. Wen L, Shibata Y, Su D, Fu L, Luu N, Shi Y-B (2017) Thyroid hormone receptor α controls developmental timing and regulates the rate and coordination of tissue specific metamorphosis in Xenopus tropicalis. Endocrinology 158(6):1985–1998 

    Article  PubMed  PubMed Central  Google Scholar 

  39. Choi J, Ishizuya-Oka A, Buchholz DR (2017) Growth, development, and intestinal remodeling occurs in the absence of thyroid hormone receptor alpha in tadpoles of Xenopus tropicalis. Endocrinology 158(6):1623–1633

    Article  PubMed  Google Scholar 

  40. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fu L, Buchholz D, Shi YB (2002) Novel double promoter approach for identification of transgenic animals: a tool for in vivo analysis of gene function and development of gene-based therapies. Mol Reprod Dev 62(4):470–476

    Article  CAS  PubMed  Google Scholar 

  42. Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC (2011) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods 8(1):74–79. https://doi.org/10.1038/nmeth.1539

    Article  PubMed  CAS  Google Scholar 

  43. Wen L, Fu L, Guo X, Chen Y, Shi YB (2015) Histone methyltransferase Dot1L plays a role in postembryonic development in Xenopus tropicalis. FASEB J 29:385–393. https://doi.org/10.1096/fj.14-252171

    Article  PubMed  CAS  Google Scholar 

  44. Vize PD, Melton DA, hemmati-Brivanlou A, Harland RM (1991) Assays for gene function in developing Xenopus embryos. Methods Cell Biol 36:367–387

    Article  CAS  PubMed  Google Scholar 

  45. Wu M, Gerhart J (1991) Raising Xenopus in the laboratory. Methods Cell Biol 36:3–18

    Article  CAS  PubMed  Google Scholar 

  46. Qiu P, Shandilya H, D'Alessio JM, O'Connor K, Durocher J, Gerard GF (2004) Mutation detection using surveyor nuclease. BioTechniques 36(4):702–707

    Article  CAS  PubMed  Google Scholar 

  47. Vouillot L, Thelie A, Pollet N (2015) Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 (Bethesda) 5(3):407–415. https://doi.org/10.1534/g3.114.015834

    Article  PubMed Central  CAS  Google Scholar 

  48. Dahlem TJ, Hoshijima K, Jurynec MJ, Gunther D, Starker CG, Locke AS, Weis AM, Voytas DF, Grunwald DJ (2012) Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet 8(8):e1002861. https://doi.org/10.1371/journal.pgen.1002861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Sedlak RH, Liang S, Niyonzima N, De Silva Feelixge HS, Roychoudhury P, Greninger AL, Weber ND, Boissel S, Scharenberg AM, Cheng A, Magaret A, Bumgarner R, Stone D, Jerome KR (2016) Digital detection of endonuclease mediated gene disruption in the HIV provirus. Sci Rep 6:20064. https://doi.org/10.1038/srep20064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hisano Y, Ota S, Arakawa K, Muraki M, Kono N, Oshita K, Sakuma T, Tomita M, Yamamoto T, Okada Y, Kawahara A (2013) Quantitative assay for TALEN activity at endogenous genomic loci. Biol Open 2(4):363–367. https://doi.org/10.1242/bio.20133871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Fu L, Wen L, Luu N, Shi YB (2016) A simple and efficient method to visualize and quantify the efficiency of chromosomal mutations from genome editing. Sci Rep 6:35488. https://doi.org/10.1038/srep35488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work in the laboratory was supported by the Intramural Research Program of National Institute of Child Health and Human Development, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Bo Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fu, L., Wen, L., Shi, YB. (2018). Role of Thyroid Hormone Receptor in Amphibian Development. In: Plateroti, M., Samarut, J. (eds) Thyroid Hormone Nuclear Receptor. Methods in Molecular Biology, vol 1801. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7902-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7902-8_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7901-1

  • Online ISBN: 978-1-4939-7902-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics