Skip to main content

Chromatin Immunoprecipitation for Identification of Protein–DNA Interactions in Human Cells

  • Protocol
  • First Online:
Two-Hybrid Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1794))

Abstract

Chromatin immunoprecipitation (ChIP) is a powerful technique allowing for investigation of protein–DNA interactions in living cells. Here, we provide a detailed step-by-step protocol for ChIP and highlight important considerations, challenges and pitfalls often encountered in the ChIP procedure. Furthermore, we present data of key quality control (QC) steps and exemplify material performance validation on transcription factor ChIP to provide a QC guide for setting up ChIP. Finally, we provide guidelines for scaling of the ChIP procedure to ChIP sequencing (ChIP-seq) and discuss important considerations associated with this.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gilmour DS, Lis JT (1984) Detecting protein-DNA interactions in vivo: distribution of RNA polymerase on specific bacterial genes. Proc Natl Acad Sci U S A 81(14):4275–4279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Solomon MJ, Varshavsky A (1985) Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc Natl Acad Sci U S A 82(19):6470–6474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Orlando V, Strutt H, Paro R (1997) Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11(2):205–214. https://doi.org/10.1006/meth.1996.0407

    Article  PubMed  CAS  Google Scholar 

  4. Kuo MH, Allis CD (1999) In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods 19(3):425–433. https://doi.org/10.1006/meth.1999.0879

    Article  PubMed  CAS  Google Scholar 

  5. Nelson JD, Denisenko O, Bomsztyk K (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 1(1):179–185. https://doi.org/10.1038/nprot.2006.27

    Article  PubMed  CAS  Google Scholar 

  6. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E, Volkert TL, Wilson CJ, Bell SP, Young RA (2000) Genome-wide location and function of DNA binding proteins. Science 290(5500):2306–2309. https://doi.org/10.1126/science.290.5500.2306

    Article  PubMed  CAS  Google Scholar 

  7. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316(5830):1497–1502. https://doi.org/10.1126/science.1141319

    Article  CAS  PubMed  Google Scholar 

  8. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G, Bernier B, Varhol R, Delaney A, Thiessen N, Griffith OL, He A, Marra M, Snyder M, Jones S (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4(8):651–657. https://doi.org/10.1038/nmeth1068

    Article  PubMed  CAS  Google Scholar 

  9. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837. https://doi.org/10.1016/j.cell.2007.05.009

    Article  PubMed  CAS  Google Scholar 

  10. Furey TS (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 13(12):840–852. https://doi.org/10.1038/nrg3306. Epub 2012 Oct 23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10(10):669–680. https://doi.org/10.1038/nrg2641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Baranello L, Kouzine F, Sanford S, Levens D (2016) ChIP bias as a function of cross-linking time. Chromosome Res 24(2):175–181. https://doi.org/10.1007/s10577-015-9509-1

    Article  PubMed  CAS  Google Scholar 

  13. Dedon PC, Soults JA, Allis CD, Gorovsky MA (1991) A simplified formaldehyde fixation and immunoprecipitation technique for studying protein-DNA interactions. Anal Biochem 197(1):83–90

    Article  CAS  PubMed  Google Scholar 

  14. Teytelman L, Thurtle DM, Rine J, van Oudenaarden A (2013) Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc Natl Acad Sci U S A 110(46):18602–18607. https://doi.org/10.1073/pnas.1316064110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Jain D, Baldi S, Zabel A, Straub T, Becker PB (2015) Active promoters give rise to false positive 'Phantom Peaks' in ChIP-seq experiments. Nucleic Acids Res 43(14):6959–6968. https://doi.org/10.1093/nar/gkv637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. https://doi.org/10.1038/nature11247

    Article  CAS  Google Scholar 

  17. Kasinathan S, Orsi GA, Zentner GE, Ahmad K, Henikoff S (2014) High-resolution mapping of transcription factor binding sites on native chromatin. Nat Methods 11(2):203–209. https://doi.org/10.1038/nmeth.2766

    Article  PubMed  CAS  Google Scholar 

  18. Nowak DE, Tian B, Brasier AR (2005) Two-step cross-linking method for identification of NF-kappaB gene network by chromatin immunoprecipitation. BioTechniques 39(5):715–725

    Article  CAS  PubMed  Google Scholar 

  19. Zeng PY, Vakoc CR, Chen ZC, Blobel GA, Berger SL (2006) In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. BioTechniques 41(6):694, 696, 698

    Article  CAS  PubMed  Google Scholar 

  20. Schmidt SF, Larsen BD, Loft A, Nielsen R, Madsen JG, Mandrup S (2015) Acute TNF-induced repression of cell identity genes is mediated by NFkappaB-directed redistribution of cofactors from super-enhancers. Genome Res 25(9):1281–1294. https://doi.org/10.1101/gr.188300.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Abdallah BM, Haack-Sorensen M, Burns JS, Elsnab B, Jakob F, Hokland P, Kassem M (2005) Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite [corrected] extensive proliferation. Biochem Biophys Res Commun 326(3):527–538. https://doi.org/10.1016/j.bbrc.2004.11.059

    Article  PubMed  CAS  Google Scholar 

  22. Nielsen R, Mandrup S (2014) Genome-wide profiling of transcription factor binding and epigenetic marks in adipocytes by ChIP-seq. Methods Enzymol 537:261–279. https://doi.org/10.1016/B978-0-12-411619-1.00014-8

    Article  PubMed  CAS  Google Scholar 

  23. Schmidl C, Rendeiro AF, Sheffield NC, Bock C (2015) ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors. Nat Methods 12(10):963–965. https://doi.org/10.1038/nmeth.3542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E, Keren-Shaul H, Mildner A, Winter D, Jung S, Friedman N, Amit I (2014) Immunogenetics. Chromatin state dynamics during blood formation. Science 345(6199):943–949. https://doi.org/10.1126/science.1256271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wallerman O, Nord H, Bysani M, Borghini L, Wadelius C (2015) lobChIP: from cells to sequencing ready ChIP libraries in a single day. Epigenetics Chromatin 8:25. https://doi.org/10.1186/s13072-015-0017-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sachs M, Onodera C, Blaschke K, Ebata KT, Song JS, Ramalho-Santos M (2013) Bivalent chromatin marks developmental regulatory genes in the mouse embryonic germline in vivo. Cell Rep 3(6):1777–1784. https://doi.org/10.1016/j.celrep.2013.04.032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Adli M, Zhu J, Bernstein BE (2010) Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors. Nat Methods 7(8):615–618. https://doi.org/10.1038/nmeth.1478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Mandrup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Larsen, B.D., Madsen, M.R., Nielsen, R., Mandrup, S. (2018). Chromatin Immunoprecipitation for Identification of Protein–DNA Interactions in Human Cells. In: Oñate-Sánchez, L. (eds) Two-Hybrid Systems. Methods in Molecular Biology, vol 1794. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7871-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7871-7_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7870-0

  • Online ISBN: 978-1-4939-7871-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics