Skip to main content

Organotypic Slice Cultures to Study Oligodendrocyte Proliferation, Fate, and Myelination

  • Protocol
Myelin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1791))

Abstract

Oligodendrocyte development and myelination are processes in the central nervous system that are regulated by cell intrinsic and extrinsic mechanisms. Organotypic slice cultures provide a simple method for studying factors that affect oligodendrocyte proliferation, differentiation, and myelination in the context of the local cellular environment. Here we show that major glial cell types and neurons are preserved in slice cultures from postnatal mouse forebrain, and their morphological characteristics are retained. We further demonstrate that cellular processes requiring interactions with neighboring cells such as myelination can proceed in slice culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dawson MR, Polito A, Levine JM, Reynolds R (2003) NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 24(2):476–488

    Article  CAS  PubMed  Google Scholar 

  2. Hill RA, Nishiyama A (2014) NG2 cells (polydendrocytes): listeners to the neural network with diverse properties. Glia 62(8):1195–1210. https://doi.org/10.1002/glia.22664

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nishiyama A (2007) Polydendrocytes: NG2 cells with many roles in development and repair of the CNS. Neuroscientist 13(1):62–76. https://doi.org/10.1177/1073858406295586

    Article  PubMed  CAS  Google Scholar 

  4. Nishiyama A, Komitova M, Suzuki R, Zhu X (2009) Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci 10(1):9–22

    Article  CAS  PubMed  Google Scholar 

  5. Dimou L, Simon C, Kirchhoff F, Takebayashi H, Gotz M (2008) Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 28(41):10434–10442

    Article  CAS  PubMed  Google Scholar 

  6. Kang SH, Fukaya M, Yang JK, Rothstein JD, Bergles DE (2010) NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68(4):668–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Young KM, Psachoulia K, Tripathi RB, Dunn SJ, Cossell L, Attwell D, Tohyama K, Richardson WD (2013) Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77(5):873–885. https://doi.org/10.1016/j.neuron.2013.01.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zhu X, Hill RA, Dietrich D, Komitova M, Suzuki R, Nishiyama A (2011) Age-dependent fate and lineage restriction of single NG2 cells. Development 138(4):745–753. https://doi.org/10.1242/dev.047951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Power J, Mayer-Proschel M, Smith J, Noble M (2002) Oligodendrocyte precursor cells from different brain regions express divergent properties consistent with the differing time courses of myelination in these regions. Dev Biol 245(2):362–375. https://doi.org/10.1006/dbio.2002.0610

    Article  PubMed  CAS  Google Scholar 

  10. Fanarraga ML, Griffiths IR, Zhao M, Duncan ID (1998) Oligodendrocytes are not inherently programmed to myelinate a specific size of axon. J Comp Neurol 399(1):94–100

    Article  CAS  PubMed  Google Scholar 

  11. Vigano F, Mobius W, Gotz M, Dimou L (2013) Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat Neurosci 16(10):1370–1372. https://doi.org/10.1038/nn.3503

    Article  PubMed  CAS  Google Scholar 

  12. Harrison RG (1907) Observations on the living developing nerve fiber. Proc Soc. Biol Med 4:140–143

    Article  Google Scholar 

  13. Peterson ER, Murray MR (1955) Myelin sheath formation in cultures of avian spinal ganglia. Am J Anat 96(3):319–355. https://doi.org/10.1002/aja.1000960302

    Article  PubMed  CAS  Google Scholar 

  14. Hild W (1957) Myelogenesis in cultures of mammalian central nervous tissue. Z Zellforsch Mikrosk Anat 46(1):71–95

    Article  CAS  PubMed  Google Scholar 

  15. Bornstein MB, Murray MR (1958) Serial observations on patterns of growth, myelin formation, maintenance and degeneration in cultures of new-born rat and kitten cerebellum. J Biophys Biochem Cytol 4(5):499–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ross LL, Bornstein MB, Lehrer GM (1962) Electron microscopic observations of rat and mouse cerebellum in tissue culture. J Cell Biol 14:19–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37(2):173–182

    Article  CAS  PubMed  Google Scholar 

  18. Bahr BA, Kessler M, Rivera S, Vanderklish PW, Hall RA, Mutneja MS, Gall C, Hoffman KB (1995) Stable maintenance of glutamate receptors and other synaptic components in long-term hippocampal slices. Hippocampus 5(5):425–439. https://doi.org/10.1002/hipo.450050505

    Article  PubMed  CAS  Google Scholar 

  19. Cho S, Liu D, Fairman D, Li P, Jenkins L, McGonigle P, Wood A (2004) Spatiotemporal evidence of apoptosis-mediated ischemic injury in organotypic hippocampal slice cultures. Neurochem Int 45(1):117–127. https://doi.org/10.1016/j.neuint.2003.11.012

    Article  PubMed  CAS  Google Scholar 

  20. Pringle AK, Sundstrom LE, Wilde GJ, Williams LR, Iannotti F (1996) Brain-derived neurotrophic factor, but not neurotrophin-3, prevents ischaemia-induced neuronal cell death in organotypic rat hippocampal slice cultures. Neurosci Lett 211(3):203–206

    Article  CAS  PubMed  Google Scholar 

  21. Ray AM, Owen DE, Evans ML, Davis JB, Benham CD (2000) Caspase inhibitors are functionally neuroprotective against oxygen glucose deprivation induced CA1 death in rat organotypic hippocampal slices. Brain Res 867(1-2):62–69

    Article  CAS  PubMed  Google Scholar 

  22. Hill RA, Patel KD, Medved J, Reiss AM, Nishiyama A (2013) NG2 cells in white matter but not gray matter proliferate in response to PDGF. J Neurosci 33(36):14558–14566. https://doi.org/10.1523/JNEUROSCI.2001-12.2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Hill RA, Patel KD, Goncalves CM, Grutzendler J, Nishiyama A (2014) Modulation of oligodendrocyte generation during a critical temporal window after NG2 cell division. Nat Neurosci 17(11):1518–1527. https://doi.org/10.1038/nn.3815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hill RA, Medved J, Patel KD, Nishiyama A (2014) Organotypic slice cultures to study oligodendrocyte dynamics and myelination. J Vis Exp 90:e51835. https://doi.org/10.3791/51835

    Article  CAS  Google Scholar 

  25. Zhu X, Bergles DE, Nishiyama A (2008) NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135(1):145–157

    Article  CAS  PubMed  Google Scholar 

  26. Sturrock RR (1980) Myelination in the mouse corpus callosum. Neuropathol Appl Neurobiol 6(6):415–420.

    Google Scholar 

  27. Novak A, Guo C, Yang W, Nagy A, Lobe CG (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28(3-4):147–155

    Article  CAS  PubMed  Google Scholar 

  28. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhu X, Zuo H, Maher BJ, Serwanski DR, LoTurco JJ, Lu QR, Nishiyama A (2012) Olig2-dependent developmental fate switch of NG2 cells. Development 139(13):2299–2307. https://doi.org/10.1242/dev.078873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zuo H, Hill RA, Sherafat AM, Lu QR, Nishiyama A (2018) Age-dependent decline in fate switch from NG2 cells to astrocytes after Olig2 deletion. J Neurosci 38(9):2359–2371

    Article  PubMed  PubMed Central  Google Scholar 

  31. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, Hempstead BL, Littman DR, Gan WB (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155(7):1596–1609. https://doi.org/10.1016/j.cell.2013.11.030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Mallon BS, Shick HE, Kidd GJ, Macklin WB (2002) Proteolipid promoter activity distinguishes two populations of NG2-positive cells throughout neonatal cortical development. J Neurosci 22(3):876–885

    Article  CAS  PubMed  Google Scholar 

  33. Hirrlinger PG, Scheller A, Braun C, Quintela-Schneider M, Fuss B, Hirrlinger J, Kirchhoff F (2005) Expression of reef coral fluorescent proteins in the central nervous system of transgenic mice. Mol Cell Neurosci 30(3):291–303. https://doi.org/10.1016/j.mcn.2005.08.011

    Article  PubMed  CAS  Google Scholar 

  34. Haber M, Vautrin S, Fry EJ, Murai KK (2009) Subtype-specific oligodendrocyte dynamics in organotypic culture. Glia 57(9):1000–1013. https://doi.org/10.1002/glia.20824

    Article  PubMed  Google Scholar 

  35. Hussain R, Ghoumari AM, Bielecki B, Steibel J, Boehm N, Liere P, Macklin WB, Kumar N, Habert R, Mhaouty-Kodja S, Tronche F, Sitruk-Ware R, Schumacher M, Ghandour MS (2013) The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination. Brain 136(Pt 1):132–146. https://doi.org/10.1093/brain/aws284

    Article  PubMed  PubMed Central  Google Scholar 

  36. Najm FJ, Lager AM, Zaremba A, Wyatt K, Caprariello AV, Factor DC, Karl RT, Maeda T, Miller RH, Tesar PJ (2013) Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat Biotechnol 31(5):426–433. https://doi.org/10.1038/nbt.2561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Barateiro A, Fernandes A (2014) Temporal oligodendrocyte lineage progression: in vitro models of proliferation, differentiation and myelination. Biochim Biophys Acta 1843(9):1917–1929. https://doi.org/10.1016/j.bbamcr.2014.04.018

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from NIH (R01 NS073425 and R01 NS074870) to AN. We thank Youfen Sun for maintaining the transgenic mouse colony.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiko Nishiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Sherafat, A., Hill, R.A., Nishiyama, A. (2018). Organotypic Slice Cultures to Study Oligodendrocyte Proliferation, Fate, and Myelination. In: Woodhoo, A. (eds) Myelin. Methods in Molecular Biology, vol 1791. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7862-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7862-5_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7861-8

  • Online ISBN: 978-1-4939-7862-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics