Skip to main content

NMR-Based Prostate Cancer Metabolomics

  • Protocol
  • First Online:
Prostate Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1786))

Abstract

Prostate cancer is the second most common malignancy, and the fifth leading cause of cancer-related death among men, worldwide. A major unsolved clinical challenge in prostate cancer is the ability to accurately distinguish indolent cancer types from the aggressive ones. Reprogramming of metabolism is now a widely accepted hallmark of cancer development, where cancer cells must be able to convert nutrients to biomass while maintaining energy production. Metabolomics is the large-scale study of small molecules, commonly known as metabolites, within cells, biofluids, tissues, or organisms. Nuclear magnetic resonance (NMR) spectroscopy is commonly applied in metabolomics studies of cancer. This chapter provides protocols for NMR-based metabolomics of cell cultures, biofluids (serum and urine), and intact tissue, with concurrent advice for optimal biobanking and sample preparation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108. https://doi.org/10.3322/caac.21262

    Article  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  3. Giskeødegård GF, Bertilsson H, Selnæs KM, Wright AJ, Bathen TF, Viset T et al (2013) Spermine and citrate as metabolic biomarkers for assessing prostate cancer aggressiveness. PLoS One 8(4):e62375. https://doi.org/10.1371/journal.pone.0062375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bathen TF, Sitter B, Sjobakk TE, Tessem MB, Gribbestad IS (2010) Magnetic resonance metabolomics of intact tissue: a biotechnological tool in cancer diagnostics and treatment evaluation. Cancer Res 70(17):6692–6696. https://doi.org/10.1158/0008-5472.can-10-0437

    Article  PubMed  CAS  Google Scholar 

  5. Hansen AF, Sandsmark E, Rye MB et al (2016) Presence of TMPRSS2-ERG is associated with alterations of the metabolic profile in human prostate cancer. Oncotarget 7(27):42071–42085. https://doi.org/10.18632/oncotarget.9817

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rye MB, Bertilsson H, Drablos F, Angelsen A, Bathen TF, Tessem MB (2014) Gene signatures ESC, MYC and ERG-fusion are early markers of a potentially dangerous subtype of prostate cancer. BMC Med Genet 7:50. https://doi.org/10.1186/1755-8794-7-50

    Article  CAS  Google Scholar 

  7. Sandsmark E, Hansen AF, Selnaes KM et al (2017) A novel non-canonical Wnt signature for prostate cancer aggressiveness. Oncotarget 8(6):9572–9586. https://doi.org/10.18632/oncotarget.14161

    Article  PubMed  Google Scholar 

  8. Tessem M-B, Bertilsson H, Angelsen A, Bathen TF, Drabløs F, Rye MB (2016) A balanced tissue composition reveals new metabolic and gene expression markers in prostate cancer. PLoS One 11(4):e0153727. https://doi.org/10.1371/journal.pone.0153727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Braadland P, Giskeødegård GF, Sandsmark E et al (2017) Ex vivo metabolic fingerprinting identifies biomarkers predictive of prostate cancer recurrence following radical prostatectomy. Br J Cancer 117(11):1656–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bezabeh T, Ijare OB, Nikulin AE, Somorjai RL, Smith ICP (2014) MRS-based Metabolomics in cancer research. Magn Reson Insights 7:1–14. https://doi.org/10.4137/MRI.S13755

    Article  PubMed  PubMed Central  Google Scholar 

  11. Giskeodegard GF, Cao MD, Bathen TF (2015) High-resolution magic-angle-spinning NMR spectroscopy of intact tissue. Methods Mol Biol 1277:37–50. https://doi.org/10.1007/978-1-4939-2377-9_4

    Article  PubMed  CAS  Google Scholar 

  12. Mallol R, Rodriguez MA, Brezmes J, Masana L, Correig X (2013) Human serum/plasma lipoprotein analysis by NMR: application to the study of diabetic dyslipidemia. Prog Nucl Magn Reson Spectrosc 70:1–24. https://doi.org/10.1016/j.pnmrs.2012.09.001

    Article  PubMed  CAS  Google Scholar 

  13. Bertilsson H, Angelsen A, Viset T, Skogseth H, Tessem MB, Halgunset J (2011) A new method to provide a fresh frozen prostate slice suitable for gene expression study and MR spectroscopy. Prostate 71(5):461–469. https://doi.org/10.1002/pros.21260

    Article  PubMed  CAS  Google Scholar 

  14. Haukaas TH, Moestue SA, Vettukattil R et al (2016) Impact of freezing delay time on tissue samples for metabolomic studies. Front Oncol 6:17. https://doi.org/10.3389/fonc.2016.00017

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jackson D, Rowlinson RA, Eaton CK et al (2006) Prostatic tissue protein alterations due to delayed time to freezing. Proteomics 6(13):3901–3908. https://doi.org/10.1002/pmic.200500794

    Article  PubMed  CAS  Google Scholar 

  16. Fang M, Ivanisevic J, Benton HP et al (2015) Thermal degradation of small molecules: a global metabolomic investigation. Anal Chem 87(21):10935–10941. https://doi.org/10.1021/acs.analchem.5b03003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sitter B, Bathen TF, Tessem M-B, Gribbestad IS (2009) High-resolution magic angle spinning (HR MAS) MR spectroscopy in metabolic characterization of human cancer. Prog Nucl Magn Reson Spectrosc 54(3):239–254. https://doi.org/10.1016/j.pnmrs.2008.10.001

    Article  CAS  Google Scholar 

  18. Andrew ER (1971) The narrowing of NMR spectra of solids by high-speed specimen rotation and the resolution of chemical shift and spin multiplet structures for solids. Prog Nucl Magn Reson Spectrosc 8(1):1–39. https://doi.org/10.1016/0079-6565(71)80001-8

    Article  CAS  Google Scholar 

  19. Lowe IJ (1959) Free induction decays of rotating solids. Phys Rev Lett 2(7):285–287

    Article  CAS  Google Scholar 

  20. Le Gall G (2015) NMR spectroscopy of biofluids and extracts. Methods Mol Biol 1277:29–36. https://doi.org/10.1007/978-1-4939-2377-9_3

    Article  PubMed  CAS  Google Scholar 

  21. McKay RT (2011) How the 1D-NOESY suppresses solvent signal in metabonomics NMR spectroscopy: an examination of the pulse sequence components and evolution. Concepts Magn Reson A 38A(5):197–220. https://doi.org/10.1002/cmr.a.20223

    Article  CAS  Google Scholar 

  22. Kleckner IR, Foster MP (2011) An introduction to NMR-based approaches for measuring protein dynamics. Biochim Biophys Acta 1814(8):942–968. https://doi.org/10.1016/j.bbapap.2010.10.012

    Article  PubMed  CAS  Google Scholar 

  23. Van QN, Chmurny GN, Veenstra TD (2003) The depletion of protein signals in metabonomics analysis with the WET–CPMG pulse sequence. Biochem Biophys Res Commun 301(4):952–959. https://doi.org/10.1016/S0006-291X(03)00079-2

    Article  PubMed  CAS  Google Scholar 

  24. Liu M, Nicholson JK, Lindon JC (1996) High-resolution diffusion and relaxation edited one- and two-dimensional 1H NMR spectroscopy of biological fluids. Anal Chem 68(19):3370–3376. https://doi.org/10.1021/ac960426p

    Article  PubMed  CAS  Google Scholar 

  25. Huang Y, Cai S, Zhang Z, Chen Z (2014) High-resolution two-dimensional J-resolved NMR spectroscopy for biological systems. Biophys J 106(9):2061–2070. https://doi.org/10.1016/j.bpj.2014.03.022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Dona AC, Kyriakides M, Scott F et al (2016) A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments. Comput Struct Biotechnol J 14:135–153. https://doi.org/10.1016/j.csbj.2016.02.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30(6):672–679

    Article  CAS  PubMed  Google Scholar 

  28. Wright AJ, Fellows GA, Griffiths JR, Wilson M, Bell BA, Howe FA (2010) Ex-vivo HRMAS of adult brain tumours: metabolite quantification and assignment of tumour biomarkers. Mol Cancer 9:66. https://doi.org/10.1186/1476-4598-9-66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Swanson MG, Zektzer AS, Tabatabai ZL et al (2006) Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn Reson Med 55(6):1257–1264. https://doi.org/10.1002/mrm.20909

    Article  PubMed  CAS  Google Scholar 

  30. Akoka S, Barantin L, Trierweiler M (1999) Concentration measurement by proton NMR using the ERETIC method. Anal Chem 71(13):2554–2557. https://doi.org/10.1021/ac981422i

    Article  PubMed  CAS  Google Scholar 

  31. Albers MJ, Butler TN, Rahwa I et al (2009) Evaluation of the ERETIC method as an improved quantitative reference for 1H HR-MAS spectroscopy of prostate tissue. Magn Reson Med 61(3):525–532. https://doi.org/10.1002/mrm.21808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wider G, Dreier L (2006) Measuring protein concentrations by NMR spectroscopy. J Am Chem Soc 128(8):2571–2576. https://doi.org/10.1021/ja055336t

    Article  PubMed  CAS  Google Scholar 

  33. Bharti SK, Sinha N, Joshi BS, Mandal SK, Roy R, Khetrapal CL (2008) Improved quantification from 1H-NMR spectra using reduced repetition times. Metabolomics 4(4):367–376. https://doi.org/10.1007/s11306-008-0130-6

    Article  CAS  Google Scholar 

  34. Emir UE, Deelchand D, Henry PG, Terpstra M (2011) Noninvasive quantification of T2 and concentrations of ascorbate and glutathione in the human brain from the same double-edited spectra. NMR Biomed 24(3):263–269. https://doi.org/10.1002/nbm.1583

    Article  PubMed  CAS  Google Scholar 

  35. Maher AD, Zirah SFM, Holmes E, Nicholson JK (2007) Experimental and analytical variation in human urine in 1H NMR spectroscopy-based metabolic phenotyping studies. Anal Chem 79(14):5204–5211. https://doi.org/10.1021/ac070212f

    Article  PubMed  CAS  Google Scholar 

  36. Provencher S (2016) LCModel & LCMgui user’s manual. LCMODEL Inc. http://s-provencher.com/pub/LCModel/manual/manual.pdf. Accessed 28 Aug 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tone F. Bathen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Euceda, L.R., Andersen, M.K., Tessem, MB., Moestue, S.A., Grinde, M.T., Bathen, T.F. (2018). NMR-Based Prostate Cancer Metabolomics. In: Culig, Z. (eds) Prostate Cancer. Methods in Molecular Biology, vol 1786. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7845-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7845-8_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7843-4

  • Online ISBN: 978-1-4939-7845-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics