Skip to main content

Network Analysis of Gene Expression

  • Protocol
  • First Online:
Gene Expression Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1783))

Abstract

Studies have pointed out that the expression of genes are highly regulated, which result in a cascade of distinct patterns of coexpression forming a network. Identifying and understanding such patterns is crucial in deciphering molecular mechanisms that underlie the pathophysiology of diseases. With the advance of high throughput assay of messenger RNA (mRNA) and high performance computing, reconstructing such network from molecular data such as gene expression is now possible. This chapter discusses an overview of methods of constructing such networks, practical considerations, and an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Crick F (1970) Central dogma of molecular biology. Nature 227:561–563

    Article  CAS  PubMed  Google Scholar 

  2. Crick FH (1958) On protein synthesis. Symp Soc Exp Biol 12:138–163

    CAS  PubMed  Google Scholar 

  3. Goldberger RF (1974) Autogenous regulation of gene expression. Science 183:810–816

    Article  CAS  PubMed  Google Scholar 

  4. Savageau MA (1977) Design of molecular control mechanisms and the demand for gene expression. Proc Natl Acad Sci U S A 74:5647–5651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maniatis T, Goodbourn S, Fischer JA (1987) Regulation of inducible and tissue-specific gene expression. Science 236:1237–1245

    Article  CAS  PubMed  Google Scholar 

  6. Killary AM, Fournier REK (1984) A genetic analysis of extinction: trans-dominant loci regulate expression of liver-specific traits in hepatoma hybrid cells. Cell 38:523–534

    Article  CAS  PubMed  Google Scholar 

  7. Wen X et al (1998) Large-scale temporal gene expression mapping of central nervous system development. Proc Natl Acad Sci U S A 95:334–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lockhart DJ et al (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14:1675–1680

    Article  CAS  PubMed  Google Scholar 

  9. Liang S, Fuhrman S, Somogyi R (1998) Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pac Symp Biocomput 3:18–29

    Google Scholar 

  10. Somogyi R, Sniegoski CA (1996) Modeling the complexity of genetic networks: understanding multigenic and pleiotropic regulation. Complexity 1:45–63

    Article  Google Scholar 

  11. Turing AM (1936) On computable numbers, with an application to the Entscheidungsproblem. Lond Math Soc Ser 2 42:230–265

    Google Scholar 

  12. Von Neumann J (1951) The general and logical theory of automataCollected Works of John Von Neumann, vol 5. Wiley, Oxford, pp 288–326

    Google Scholar 

  13. Alon U et al (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci U S A 96:6745–6750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7:601–620

    Article  CAS  PubMed  Google Scholar 

  15. Pearl J (2009) Causality: models, reasoning, and inference. Cambridge University Press, Cambridge

    Book  Google Scholar 

  16. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:17

    Article  Google Scholar 

  17. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Song L, Langfelder P, Horvath S (2012) Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinformatics 13:328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cilibrasi R, Vitanyi PMB (2005) Clustering by compression. IEEE Trans Inf Theory 51:1523–1545

    Article  Google Scholar 

  20. Arndt C (2004) Information measures: information and its description in science and engineering. Springer, New York, NY

    Google Scholar 

  21. Kullback S, Leibler RA (1951) On Information and Sufficiency. Ann Math Stat 22:79–86

    Article  Google Scholar 

  22. Opgen-Rhein R, Strimmer K (2007) From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst Biol 1:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Butte AJ, Kohane IS (1999) Unsupervised knowledge discovery in medical databases using relevance networks. Proc AMIA Symp:711–715

    Google Scholar 

  24. Ritchie SC et al (2016) A scalable permutation approach reveals replication and preservation patterns of network modules in large datasets. Cell Syst 3:71–82

    Article  CAS  PubMed  Google Scholar 

  25. Barabási A (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  Google Scholar 

  26. Yang Y et al (2014) Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types. Nat Commun 5:3231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang X, Dalkic E, Wu M, Chan C (2008) Gene module level analysis: identification to networks and dynamics. Curr Opin Biotechnol 19:482–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Newman AM, Cooper JB (2010) AutoSOME: a clustering method for identifying gene expression modules without prior knowledge of cluster number. BMC Bioinformatics 11:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harary F (1994) Graph theory. Westview Press, Boulder, CO

    Google Scholar 

  30. Dong J, Horvath S (2007) Understanding network concepts in modules. BMC Syst Biol 1:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ashburner M et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Subramanian A et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aibar S, Fontanillo C, Droste C, De Las Rivas J (2015) Functional gene networks: R/Bioc package to generate and analyse gene networks derived from functional enrichment and clustering. Bioinformatics 31:1686–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang L, Feng XK, Ng YK, Li SC (2016) Reconstructing directed gene regulatory network by only gene expression data. BMC Genomics 17:430

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schadt EE et al (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37:710–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schadt EE et al (2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biol e107:6

    Google Scholar 

  38. Andersson SA, Madigan DB, Perlman MD (1997) A characterization of Markov equivalence classes for acyclic digraphs. Ann Stat 25:505. https://doi.org/10.7916/D8FX77J3

    Article  Google Scholar 

  39. Mähler N et al (2017) Gene co-expression network connectivity is an important determinant of selective constraint. PLoS Genet 13:e1006402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huan T et al (2013) A systems biology framework identifies molecular underpinnings of coronary heart disease. Arterioscler Thromb Vasc Biol 33:1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol 1:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Espadaler J, Romero-Isart O, Jackson RM, Oliva B (2005) Prediction of protein-protein interactions using distant conservation of sequence patterns and structure relationships. Bioinformatics 21:3360–3368

    Article  CAS  PubMed  Google Scholar 

  43. Heckerman D (1995) A tutorial on learning with Bayesian network. Microsoft Tech. Rep. MSTR-TR-95-06. Microsoft Research, Advanced Technology Division, Redmond, WA, pp 1–58

    Google Scholar 

  44. Niculescu RS, Mitchell TM, Rao RB (2006) Bayesian network learning with parameter constraints. J Mach Learn Res 7:1357–1383

    Google Scholar 

  45. Niculescu RS, Mitchell TM, Rao RB (2007) A theoretical framework for learning Bayesian networks with parameter inequality constraints. IJCAI07 Proc. 20th Int. Jt. Conf. Artifical Intell. Morgan Kaufmann Publishers Inc, San Francisco, CA, pp 155–160

    Google Scholar 

  46. Tong Y, Ji Q (2008) Learning Bayesian Networks with qualitative constraints. IEEE, Washington, DC, pp 1–8. https://doi.org/10.1109/CVPR.2008.4587368

    Book  Google Scholar 

  47. Reed E, Mengshoel OJ (2014) Bayesian network parameter learning using EM with parameter sharing. Proc Elev UAI Conf Bayesian Model Appl Workshop, pp 48–59

    Google Scholar 

  48. Liao W, Ji Q (2009) Learning Bayesian network parameters under incomplete data with domain knowledge. Pattern Recognit 42:3046–3056

    Article  Google Scholar 

  49. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning. Springer, New York, NY

    Book  Google Scholar 

  50. Lauritzen SL, Spiegelhalter DJ (1988) Local computations with probabilities on graphical structures and their application to expert systems. J R Stat Soc 50:157–224

    Google Scholar 

  51. Dechter R (1996) Bucket elimination: a unifying framework for probabilistic inference. in UAI ’96 Proceedings of the Twelfth International Conference on Uncertainty in Artificial Intelligence. 211–219

    Google Scholar 

  52. Irizarry RA et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostat Oxf Engl 4:249–264

    Article  Google Scholar 

  53. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Patro R, Mount SM, Kingsford C (2014) Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. Nat Biotechnol 32:462–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li P, Piao Y, Shon HS, Ryu KH (2015) Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data. BMC Bioinformatics 16:347

    Article  PubMed  PubMed Central  Google Scholar 

  56. Joehanes R et al (2013) Gene expression signatures of coronary heart disease. Arterioscler Thromb Vasc Biol 33:1418–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8:118–127

    Article  PubMed  Google Scholar 

  58. Akulenko R, Merl M, Helms V (2016) BEclear: batch effect detection and adjustment in DNA methylation data. PLoS One 11:e0159921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Westra H-J et al (2013) Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet 45:1238–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yao C et al (2015) Integromic analysis of genetic variation and gene expression identifies networks for cardiovascular disease phenotypes. Circulation 131:536–549

    Article  CAS  PubMed  Google Scholar 

  61. Peters MJ et al (2015) The transcriptional landscape of age in human peripheral blood. Nat Commun 6:8570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Joehanes R et al (2016) Epigenetic signatures of cigarette smoking. Circ Cardiovasc Genet 9:436–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Huan T et al (2016) A whole-blood transcriptome meta-analysis identifies gene expression signatures of cigarette smoking. Hum Mol Genet 25:4611–4623

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Xiao Y (2009) A tutorial on analysis and simulation of Boolean gene regulatory network models. Curr Genomics 10:511–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Segal E et al (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34:166–176

    Article  PubMed  Google Scholar 

  66. Sipser M (2010) Introduction to the theory of computation. Thomson Course Technology, Boston, MA

    Google Scholar 

  67. Chickering DM, Heckerman D, Meek C (2004) Large-sample learning of Bayesian networks is NP-hard. J. Mach. Learn. Res. 5:1287–1330

    Google Scholar 

  68. Daly R, Shen Q, Aitken S (2011) Learning Bayesian networks: approaches and issues. Knowl Eng Rev 26:99–157

    Article  Google Scholar 

  69. Voineagu I et al (2011) Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474:380–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Serin EAR, Nijveen H, Hilhorst HWM, Ligterink W (2016) Learning from co-expression networks: possibilities and challenges. Front Plant Sci 7:444

    Article  PubMed  PubMed Central  Google Scholar 

  71. David CJ, Manley JL (2010) Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev 24:2343–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang J, Manley JL (2013) Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov 3:1228–1237

    Article  CAS  PubMed  Google Scholar 

  73. Schwerk C, Schulze-Osthoff K (2005) Regulation of apoptosis by alternative pre-mRNA splicing. Mol Cell 19:1–13

    Article  CAS  PubMed  Google Scholar 

  74. Cao J, Qi X, Zhao H (2012) Modeling gene regulation networks using ordinary differential equations. Methods Mol Biol (Clifton NJ) 802:185–197

    Article  CAS  Google Scholar 

  75. Bansal K, Yang K, Nistala GJ, Gennis RB, Bhalerao KD (2010) A positive feedback-based gene circuit to increase the production of a membrane protein. J Biol Eng 4:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nomura M, Yates JL, Dean D, Post LE (1980) Feedback regulation of ribosomal protein gene expression in Escherichia coli: structural homology of ribosomal RNA and ribosomal protein MRNA. Proc Natl Acad Sci U S A 77:7084–7088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Singh A (2011) Negative feedback through mRNA provides the best control of gene-expression noise. IEEE Trans Nanobioscience 10:194–200

    Article  PubMed  Google Scholar 

  78. Liu B, de la Fuente A, Hoeschele I (2008) Gene network inference via structural equation modeling in genetical genomics experiments. Genetics 178:1763–1776

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cai X, Bazerque JA, Giannakis GB (2013) Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations. PLoS Comput Biol 9:e1003068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nelsen RB (1999) An introduction to copulas. Springer, New York, NY

    Book  Google Scholar 

  81. Kim J-M et al (2008) A copula method for modeling directional dependence of genes. BMC Bioinformatics 9:225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Žitnik M, Zupan B (2015) Gene network inference by fusing data from diverse distributions. Bioinformatics 31:i230–i239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bao L, Zhu Z, Ye J (2009) Modeling oncology gene pathways network with multiple genotypes and phenotypes via a copula method. IEEE, Washington, DC, pp 237–246. https://doi.org/10.1109/CIBCB.2009.4925734

    Book  Google Scholar 

  84. Jin Y, Lindsey M (2008) Stability analysis of genetic regulatory network with additive noises. BMC Genomics 9:S21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rajapakse JC, Mundra PA (2011) Stability of building gene regulatory networks with sparse autoregressive models. BMC Bioinformatics 12:S17

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wu S et al (2016) Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks. Proc Natl Acad Sci 113:4290–4295

    Article  CAS  PubMed  Google Scholar 

  87. Gibson SM et al (2013) Massive-scale gene co-expression network construction and robustness testing using random matrix theory. PLoS One 8:e55871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Montojo J, Zuberi K, Rodriguez H, Bader GD, Morris Q (2015) GeneMANIA: fast gene network construction and function prediction for Cytoscape. F1000Research 3:153. https://doi.org/10.12688/f1000research.4572.1

    Article  Google Scholar 

  89. Ghahramani Z (1998) Learning dynamic Bayesian networks. In: Adaptive processing of sequences and data structures. Springer, New York, NY, pp 168–197

    Chapter  Google Scholar 

  90. Murphy KP (2002) Dynamic Bayesian networks: representation, inference and learning. University of California, Berkeley, CA

    Google Scholar 

  91. Sanghai S, Domingos P, Weld D (2005) Relational dynamic Bayesian networks. J Artif Intell Res 24:759–797

    Article  Google Scholar 

  92. Zou M, Conzen SD (2005) A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21:71–79

    Article  CAS  PubMed  Google Scholar 

  93. Opgen-Rhein R, Strimmer K (2006) Inferring gene dependency networks from genomic longitudinal data: a functional data approach. REVSTAT Stat J 4:53–65

    Google Scholar 

  94. Bender C et al (2011) Inferring signalling networks from longitudinal data using sampling based approaches in the R-package ‘ddepn’. BMC Bioinformatics 12:291

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roby Joehanes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Joehanes, R. (2018). Network Analysis of Gene Expression. In: Raghavachari, N., Garcia-Reyero, N. (eds) Gene Expression Analysis. Methods in Molecular Biology, vol 1783. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7834-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7834-2_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7833-5

  • Online ISBN: 978-1-4939-7834-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics