Skip to main content

Peptide Self-Assembly Measured Using Fluorescence Correlation Spectroscopy

  • Protocol
  • First Online:
Peptide Self-Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1777))

Abstract

Fluorescence correlation spectroscopy (FCS) is a flexible and powerful technique to measure the diffusion of fluorescently labeled particles. It has been important in examining a range of biological processes, from intracellular transport, to DNA hybridization. It is particularly suited to measuring the assembly of peptides, since peptides are often too small to be detected by standard light scattering methods, or may not contain aromatic amino acid residues, which limits the use of other spectroscopic techniques. In this protocol, we describe state-of-the-art sample preparation for Aβ1–42 peptide solutions and the measurement and analysis of the self-assembly of the peptide to form fibrils via a number of intermediate states using FCS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ries J, Schwille P (2012) Fluorescence correlation spectroscopy. BioEssays 34:361–368

    Article  Google Scholar 

  2. Magde D, Elson EL, Webb WW (1972) Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29(11):705–708

    Article  CAS  Google Scholar 

  3. Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13:1–27

    Article  CAS  Google Scholar 

  4. Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61

    Article  CAS  Google Scholar 

  5. Rigler R, Mets Ű, Widengren J, Kask P (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur Biophys J 22:169–175

    Article  CAS  Google Scholar 

  6. Kinjo M, Rigler R (1995) Ultrasensitive hybridization analysis using fluorescence correlation spectroscopy. Nucl Acids Res 23(10):1795–1799

    Article  CAS  Google Scholar 

  7. Fitzpatrick J, Lillemeier B (2011) Fluorescence correlation spectroscopy: linking molecular dynamics to biological function in vitro and in situ. Curr Opin Struct Biol 21(5):650–660

    Article  CAS  Google Scholar 

  8. Schwille P, Haustein E (2001) Fluorescence correlation spectroscopy—an introduction to its concepts and applications. Biophys Textbook Online 1(3):1–33

    Google Scholar 

  9. Rusu L, Gambhir A, McLaughlin S, Rädler JO (2004) Fluorescence correlation spectroscopy studies of peptide and protein binding phospholipid vesicles. Biophys J 87(2):1044–1053

    Article  CAS  Google Scholar 

  10. Comas-Garcia M, Garmann RF, Singaram SW, Ben-Shaul A, Knobler CM, Gelbart WM (2014) Characterisation of viral capsid protein self-assembly around short single-stranded RNA. J Phys Chem B 118(27):7510–7519

    Article  CAS  Google Scholar 

  11. Tjernberg LO, Pramanik A, Björling S, Thyberg P, Thyberg J, Nordstedt C, Berndt KD, Terenius L, Rigler R (1999) Amyloid β-peptide polymerization studied using fluorescence correlation spectroscopy. Chem Biol 6(1):53–62

    Article  CAS  Google Scholar 

  12. Sengupta P, Garai K, Balaji J, Periasamy N, Maiti S (2003) Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy. Biophys J 84(3):1977–1984

    Article  CAS  Google Scholar 

  13. Garai K, Sahoo B, Sengupta P, Maiti S (2008) Quasihomogeneous nucleation of amyloid beta yields numerical bounds for the critical radius, the surface tension, and the free energy barrier for nucleus formation. J Chem Phys 128(4):045102-1–045102-7

    Article  Google Scholar 

  14. Pal N, Verma SD, Singh MK, Singh MK, Sobhan S (2011) Fluorescence correlation spectroscopy: an efficient tool for measuring size, size-distribution and polydispersity of microemulsion droplets in solution. Anal Chem 83(20):7736–7744

    Article  CAS  Google Scholar 

  15. Mittag JJ, Milani S, Walsh DM, Rädler JO, McManus JJ (2014) Simultaneous measurement of a range of particle sizes during Aβ1-42 fibrillogenesis quantified using fluorescence correlation spectroscopy. Biochem Biophys Res Commun 448(2):195–199

    Article  CAS  Google Scholar 

  16. www.ibidi.com/service/application_notes/AN08_Coating.pdf

  17. Provencher SW (1982) Contin: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun 27:229–242

    Article  Google Scholar 

  18. Tirado M, Lopez Martinez C, Garcia de la Torre J (1984) Comparison of theories for the translational and rotational diffusion coefficients for rod-like macromolecules. Application to short DNA fragments. J Chem Phys 81(4):2047–2052

    Article  Google Scholar 

  19. Petrásěk Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94:1437–1448

    Article  Google Scholar 

  20. Dertinger T, Loman A, Ewers B, Müller CB, Krämer B, Enderlein J (2008) The optics and performance of dual-focus fluorescence correlation spectroscopy. Opt Express 16(19):14353–14368

    Article  Google Scholar 

  21. Kapusta P (2010) Absolute diffusion coefficients: compilation of reference data for FCS calibration. PicoQuant GmbH Application Note

    Google Scholar 

  22. Dertinger T, Pacheco V, von der Hocht I, Hartman RH, Gregor I, Enderlein J (2007) Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurement. Chem Phys Chem 8(3):433–443

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was made possible by funding from Science Foundation Ireland Stokes Lectureship (to J. J.McM); European Science Foundation networking programme “epitopeMap” (grant to J.O. R. and J. J. McM); EU FP7 (NanoTransKinetics grant to JJM, JOR), Deutsche Forschungsgemeinschaft (JJM, travel grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer J. McManus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mittag, J.J., Rädler, J.O., McManus, J.J. (2018). Peptide Self-Assembly Measured Using Fluorescence Correlation Spectroscopy. In: Nilsson, B., Doran, T. (eds) Peptide Self-Assembly. Methods in Molecular Biology, vol 1777. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7811-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7811-3_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7809-0

  • Online ISBN: 978-1-4939-7811-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics