Skip to main content

Chromothripsis and the Macroevolution Theory

  • Protocol
  • First Online:
Chromothripsis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1769))

Abstract

The recent discovery of a new class of massive chromosomal rearrangements, occurring during one unique cellular event and baptized “chromothripsis,” deeply modifies our perception on the genesis of complex genomic rearrangements, but also it raises the question of the potential driving role of chromothripsis in species evolution. The occurrence of chromothripsis appears to be in good agreement with macroevolution models proposed as a complement to phyletic gradualism. The emergence of this unexpected phenomenon may help to demonstrate the contribution of chromosome rearrangements to speciation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kloosterman WP, Gurvey V, van Roosmalen M et al (2011) Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum Mol Genet 20:1916–1924

    Article  CAS  PubMed  Google Scholar 

  3. Molenaar JJ, Koster J, Zwijnenburg DA et al (2012) Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483:589–593

    Article  CAS  PubMed  Google Scholar 

  4. Chiang C, Jacobsen JC, Ernst C et al (2012) Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat Genet 44:390–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tubio JMC, Estivill X (2011) When catastrophe strikes a cell. Nature 470:476–477

    Article  CAS  PubMed  Google Scholar 

  6. Rausch T, Jones DTW, Zapatka M et al (2012) Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148:59–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones MJK, Jallepalli PV (2010) Chromothripsis: chromosomes in crisis. Dev Cell 23:908–917

    Article  Google Scholar 

  8. Crasta K, Ganem NJ, Dagher R et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ledbetter DH (2008) Chaos in the embryo. Nat Med 5:490–491

    Google Scholar 

  10. Pellestor (2014) Chromothripsis: how does such a catastrophic event impact human reproduction ? Hum Reprod 29(3):388–393

    Article  CAS  PubMed  Google Scholar 

  11. Korbel JO, Campbell PJ (2013) Criteria for inference of chromothripsis in cancer genomes. Cell 152:1226–1236

    Article  CAS  PubMed  Google Scholar 

  12. Govind SK, Zia A, Hennings-Yeomans PH et al (2014) ShatterProof: operational detection and quantification of chromothripsis. BMC Bioinformatics 15:78. https://doi.org/10.1186/1471-2105-15-78

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yang J, Liu J, Ouyang L et al (2016) CTLPScanner: a web server for chromothripsis-like pattern detection. Nucleic Acids Res 8 44(W1):W252–W258. https://doi.org/10.1093/nar/gkw434

    Article  CAS  Google Scholar 

  14. Goldschmidt R (1940) The material basis of evolution. Yale University Press, New Haven, London

    Google Scholar 

  15. Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in Paleobiology. Freeman Cooper, San Francisco, pp 82–115

    Google Scholar 

  16. Gould SJ, Eldredge N (1993) Punctuated equilibrium comes of age. Nature 366:223–227

    Article  CAS  PubMed  Google Scholar 

  17. Mallet J (2007) Hybrid speciation. Nature 446:279–283

    Article  CAS  PubMed  Google Scholar 

  18. Chouard T (2010) Revenge of the hopeful monster. Nature 463:864–867

    Article  CAS  PubMed  Google Scholar 

  19. Reiseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83:363–372

    Article  Google Scholar 

  20. Dittrich-Reed DR, Fitzpatrick B (2013) Transgressive hybrids as hopeful monsters. Evol Biol 40:310–315

    Article  PubMed  Google Scholar 

  21. Neme R, Amador C, Yildirim B et al (2017) Random sequences are an abundant source of bioactive RNAs or peptides. Nat Ecol Evol 1(6):0217. https://doi.org/10.1038/s41559-017-0127

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wilson BA, Foy SG, Neme R et al (2017) Young genes are highly disordered as predicted by the preadaptation hypothesis of de novo gene birth. Nat Ecol Evol 1(6):0146–0146. https://doi.org/10.1038/s41559-017-0146

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gu S, Szafranski P, Akdemir ZC (2016) Mechanisms for complex chromosomal insertions. PLoS Genet 12(11):e1006446. https://doi.org/10.1371/journal.pgen.1006446

    Article  PubMed  PubMed Central  Google Scholar 

  24. Symer DE, Connelly C, Szak ST et al (2002) Human L1 retrotransposition is associated with genetic instability in vivo. Cell 110:327–328

    Article  CAS  PubMed  Google Scholar 

  25. Beck CR, Garcia-Perez JL, Badge RM et al (2011) LINE-I elements in structural variation and disease. Annu Rev Genomics Hum Genet 12:187–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Valton AL, Dekker J (2016) TAD disruption as oncogenic driver. Curr Opin Genet Dev 36:34–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lupianez DG, Spielmann M, Mundlos S (2016) Breaking TADs: how alterations of chromatin domains result in disease. Trends Genet 33(4):225–237

    Article  Google Scholar 

  28. Middelkamp S, van Heesch S, Braat AK et al (2017) Molecular dissection of germline chromothripsis in a developmental context using patient-derived iPS cells. Genome Med 9(1):9. https://doi.org/10.1186/s13073-017-0399-z

    Article  PubMed  PubMed Central  Google Scholar 

  29. Collins RL, Brand H, Redin CE et al (2017) Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome. Genome Biol 18(1):36. https://doi.org/10.1186/s13059-017-1158-6

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tan EH, Henry IM, Ravi M et al (2015) Catastrophic chromosomal restructuring during genome elimination in plants. elife 4:e06516. https://doi.org/10.7554/eLife.06516

    PubMed  PubMed Central  Google Scholar 

  31. Froment JV, Kaidi A, Jackson SP (2012) Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer 12(10):663–670

    Article  Google Scholar 

  32. Notta F, Chang-Seng-Yue M, Lemire M et al (2016) A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature 538(7625):378–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. de Pagter MS, van Roosmalen MJ, Baas AF et al (2015) Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring. Am J Hum Genet 96(4):651–656

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bertelsen B, Nazaryan-Petersen L, Sun W et al (2016) A germline chromothripsis event stably segregating in 11 individuals through three generations. Genet Med 18(5):494–500. https://doi.org/10.1038/gim.2015.112

    Article  PubMed  Google Scholar 

  35. Fukami M, Shima H, Suzuki E et al (2017) Catastrophic cellular events leading to complex chromosomal rearrangements in the germline. Clin Genet 91:653–660

    Article  CAS  PubMed  Google Scholar 

  36. McDermott DH, Gao JL, Liu Q et al (2015) Chromothriptic cure of WHIM syndrome. Cell 160:686–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sheldon PR (1990) Shaking up evolutionary patterns. Nature 345:772

    Article  Google Scholar 

  38. Dutrillaux B (1979) Chromosomal evolution in primates: tentative phylogeny from microcebus murinus (prosimian) to man. Hum Genet 48:251–314

    Article  CAS  PubMed  Google Scholar 

  39. Britton-Davidian J, Catalan J, Ramalhinho M et al (2000) Rapid chromosomal evolution in island mice. Nature 403:158

    Article  CAS  PubMed  Google Scholar 

  40. Noor MAF, Grams KL, Bertucci LA et al (2001) Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci U S A 98:12084–12088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yunis JJ, Sawyer JR, Dunham K (1980) The striking resemblance of high-resolution g-banded chromosomes of man and chimpanzee. Science 208:145–1148

    Article  Google Scholar 

  42. Newman TL, Tuzun E, Morrison VA et al (2005) A genome-wide survey of structural variation between human and chimpanzee. Genome Res 15:1344–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pevzner P, Tesler G (2003) Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome Res 13:37–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dennis MY, Harshman L, Nelson BJ et al (2017) The evolution and population diversity of human-specific segmental duplications. Nat Ecol Evol 1:0069. https://doi.org/10.1038/s41559-016-0069

    Article  PubMed  PubMed Central  Google Scholar 

  45. Carbone L, Harris RA, Gnerre S et al (2014) Gibbon genome and the fast karyotype evolution of small apes. Nature 513:195–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lässig M, Mustonen V, Walczak AM (2017) Predicting evolution. Nat Ecol Evol 1:0077. https://doi.org/10.1038/s41559-017-0077

    Article  Google Scholar 

Download references

Acknowledgments

Work in the unit of Chromosomal Genetics is supported by the CHU research platform ChromoStem (http://www.chu-montpellier.fr/fr/chercheurs/plateformes/les-plateformes-recherche/chromostem/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Pellestor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pellestor, F. (2018). Chromothripsis and the Macroevolution Theory. In: Pellestor, F. (eds) Chromothripsis. Methods in Molecular Biology, vol 1769. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7780-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7780-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7779-6

  • Online ISBN: 978-1-4939-7780-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics