Skip to main content

Highly Efficient and Reliable DNA Aptamer Selection Using the Partitioning Capabilities of ddPCR: The Hi-Fi SELEX Method

  • Protocol
  • First Online:
Digital PCR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1768))

Abstract

In addition to its growing use in detecting and quantifying genes and larger genomic events, the partitioning used in digital PCR can serve as a powerful tool for high-fidelity amplification of synthetic combinatorial libraries of single-stranded DNA. Sequence-diverse libraries of this type are used as a basis for selecting tight-binding aptamers against a specific target. Here we provide a detailed description of the Hi-Fi SELEX protocol for rapid and efficient DNA aptamer selection. As part of that methodology, we describe how Hi-Fi SELEX gains advantages over other aptamer selection methods in part through the use of the massive partitioning capability of digital PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Edwards BM, Barash SC, Main SH, Choi GH, Minter R, Ullrich S, Williams E, Du Fou L, Wilton J, Albert VR, Ruben SM, Vaughan TJ (2003) The remarkable flexibility of the human antibody repertoire–isolation of over one thousand different antibodies to a single protein, BLyS. J Mol Biol 334:103–118

    Article  CAS  Google Scholar 

  2. Xing PX, Russell S, Prenzoska J, McKenzie JF (1994) Discrimination between alternatively spliced STP-A and -B isoforms of CD46. Immunology 83:122–127

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Raska M, Czernekova L, Moldoveanu Z, Zachova K, Elliott M, Novak Z, Hall S, Hoelscher M, Maboko L, Brown R, Smith P, Mestecky J, Novak J (2014) Differential glycosylation of envelope gp120 is associated with differential recognition of HIV-1 by virus-specific antibodies and cell infection. AIDS Res Ther 11:1–16

    Article  Google Scholar 

  4. Mould DR, Sweeney KR (2007) The pharmacokinetics and pharmacodynamics of monoclonal antibodies–mechanistic modeling applied to drug development. Curr Opin Drug Discov Devel 10:84–96

    CAS  PubMed  Google Scholar 

  5. Chapman AP, Antoniw P, Spitali M, West S, Stephens S, King DJ (1999) Therapeutic antibody fragments with prolonged in vivo half-lives. Nat Biotech 17:780–783

    Article  CAS  Google Scholar 

  6. Chames P, Van Regenmortel M, Weiss E, Baty D (2009) Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157:220–233

    Article  CAS  Google Scholar 

  7. Ruigrok VJ, Levisson M, Eppink MH, Smidt H, van der Oost J (2011) Alternative affinity tools: more attractive than antibodies? Biochem J 436:1–13

    Article  CAS  Google Scholar 

  8. Skerra A (2007) Alternative non-antibody scaffolds for molecular recognition. Curr Opin Biotechnol 18:295–304

    Article  CAS  Google Scholar 

  9. Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650

    CAS  PubMed  Google Scholar 

  10. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  Google Scholar 

  11. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  CAS  Google Scholar 

  12. Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344(6265):467–468

    Article  CAS  Google Scholar 

  13. Ozer A, Pagano JM, Lis JT (2014) New technologies provide quantum changes in the scale, speed, and success of SELEX methods and aptamer characterization. Mol Ther Nucleic Acids 3:e183

    Article  CAS  Google Scholar 

  14. Ouellet E, Lagally ET, Cheung KC, Haynes C (2014) A simple method for eliminating fixed-region interference of aptamer binding during SELEX. Biotechnol Bioeng 111(11):2265–2279

    Article  CAS  Google Scholar 

  15. Ouellet E, Foley JH, Conway EM, Haynes C (2015) Hi-fi SELEX: a high-fidelity digital PCR based therapeutic aptamer discovery platform. Biotechnol Bioeng 112(8):1506–1522

    Article  CAS  Google Scholar 

  16. Bartel DP, Zapp ML, Green MR, Szostak JW (1991) HIV-1 rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA. Cell 67:529–536

    Article  CAS  Google Scholar 

  17. Lorenz C, von Pelchrzim F, Schroeder R (2006) Genomic systematic evolution of ligands by exponential enrichment (genomic SELEX) for the identification of protein-binding RNAs independent of their expression levels. Nat Protoc 1:2204–2212

    Article  CAS  Google Scholar 

  18. Zimmermann B, Bilusic I, Lorenz C, Schroeder R (2010) Genomic SELEX: a discovery tool for genomic aptamers. Methods 52:125–132

    Article  CAS  Google Scholar 

  19. Keefe AD, Cload ST (2008) SELEX with modified nucleotides. Curr Opin Chem Biol 12:448–456

    Article  CAS  Google Scholar 

  20. Kuwahara M, Obika S (2013) In vitro selection of BNA (LNA) aptamers. Artif DNA PNA XNA 4:39–48

    Article  Google Scholar 

  21. Klussmann S, Nolte A, Bald R, Erdmann VA, Furste JP (1996) Mirror-image RNA that binds D-adenosine. Nat Biotech 14:1112–1115

    Article  CAS  Google Scholar 

  22. Hall B, Micheletti JM, Satya P, Ogle K, Pollard J, Ellington AD (2001) Design, synthesis, and amplification of DNA pools for in vitro selection. In: Current protocols in molecular biology. John Wiley & Sons, Inc., Hoboken, NJ, pp 24.2.1–24.227

    Google Scholar 

  23. Jiménez E, Sefah K, López-Colón D, Van Simaeys D, Chen HW, Tockman MS, Tan W (2012) Generation of lung adenocarcinoma DNA aptamers for cancer studies. PLoS One 7(10):e46222

    Article  Google Scholar 

  24. Sefah K, Shangguan D, Xiong X, O’Donoghue MB, Tan W (2010) Development of DNA aptamers using cell-SELEX. Nat Protoc 5:1169–1185

    Article  CAS  Google Scholar 

  25. Gopinath SC, Sakamaki Y, Kawasaki K, Kumar PK (2006) An efficient RNA aptamer against human influenza B virus hemagglutinin. J Biochem 139:837–846

    Article  CAS  Google Scholar 

  26. Weng C-H, Huang C-J, Lee G-B (2012) Screening of aptamers on microfluidic systems for clinical applications. Sensors 12(7):9514–9529

    Article  CAS  Google Scholar 

  27. Gong P, Grainger DW (2007) Nonfouling surfaces: a review of principles and applications for microarray capture assay designs. Methods Mol Biol 381:59–92

    CAS  PubMed  Google Scholar 

  28. Cattani-Scholz A, Pedone D, Blobner F, Abstreiter G, Schwartz J, Tornow M, Andruzzi L (2009) PNA-PEG modified silicon platforms as functional bio-interfaces for applications in DNA microarrays and biosensors. Biomacromolecules 10:489–496

    Article  CAS  Google Scholar 

  29. Schlapak R, Pammer P, Armitage D, Zhu R, Hinterdorfer P, Vaupel M, Frühwirth T, Howorka S (2005) Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays. Langmuir 22:277–285

    Article  Google Scholar 

  30. Poncin-Epaillard F, Vrlinic T, Debarnot D, Mozetic M, Coudreuse A, Legeay G, El Moualij B, Zorzi W (2012) Surface treatment of polymeric materials controlling the adhesion of biomolecules. J Funct Biomater 3:528–543

    Article  CAS  Google Scholar 

  31. SantaLucia J Jr, Hicks D (2004) The thermodynamics of DNA structural motifs. Annu Rev Biophys Biomol Struct 33:415–440

    Article  CAS  Google Scholar 

  32. Lou X, Qian J, Xiao Y, Viel L, Gerdon AE, Lagally ET, Atzberger P, Tarasow TM, Heeger AJ, Soh HT (2009) Micromagnetic selection of aptamers in microfluidic channels. Proc Natl Acad Sci 106:2989–2994

    Article  CAS  Google Scholar 

  33. Nieuwlandt D (2000) In vitro selection of functional nucleic acid sequences. Curr Issues Mol Biol 2:9–16

    CAS  PubMed  Google Scholar 

  34. Musheev MU, Krylov SN (2006) Selection of aptamers by systematic evolution of ligands by exponential enrichment: addressing the polymerase chain reaction issue. Anal Chim Acta 564:91–96

    Article  CAS  Google Scholar 

  35. Nakano M, Komatsu J, Matsuura S-i, Takashima K, Katsura S, Mizuno A (2003) Single-molecule PCR using water-in-oil emulsion. J Biotechnol 102:117–124

    Article  CAS  Google Scholar 

  36. Williams R, Peisajovich SG, Miller OJ, Magdassi S, Tawfik DS, Griffiths AD (2006) Amplification of complex gene libraries by emulsion PCR. Nat Methods 3:545–550

    Article  CAS  Google Scholar 

  37. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim J-B, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    Article  CAS  Google Scholar 

  38. Schütze T, Wilhelm B, Greiner N, Braun H, Peter F, Mörl M, Erdmann VA, Lehrach H, Konthur Z, Menger M, Arndt PF, Glökler J (2011) Probing the SELEX process with next-generation sequencing. PLoS One 6:e29604

    Article  Google Scholar 

  39. Hoon S, Zhou B, Janda KD, Brenner S, Scolnick J (2011) Aptamer selection by high-throughput sequencing and informatic analysis. BioTechniques 51:413–416

    Article  CAS  Google Scholar 

  40. Kai E, Sumikura K, Ikebukuro K, Karube I (1998) Purification of single stranded DNA from asymmetric PCR product using the SMART system. Biotechnol Tech 12:935–939

    Article  CAS  Google Scholar 

  41. Pagratis NC (1996) Rapid preparation of single stranded DNA from PCR products by streptavidin induced electrophoretic mobility shift. Nucleic Acids Res 24:3645–3646

    Article  CAS  Google Scholar 

  42. Civit L, Fragoso A, O'Sullivan CK (2012) Evaluation of techniques for generation of single-stranded DNA for quantitative detection. Anal Biochem 431:132–138

    Article  CAS  Google Scholar 

  43. Svobodova M, Pinto A, Nadal P, O’Sullivan CK (2012) Comparison of different methods for generation of single-stranded DNA for SELEX processes. Anal Bioanal Chem 404:835–842

    Article  CAS  Google Scholar 

  44. Avci-Adali M, Paul A, Wilhelm N, Ziemer G, Wendel HP (2009) Upgrading SELEX technology by using lambda exonuclease digestion for single-stranded DNA generation. Molecules 15:1–11

    Article  Google Scholar 

  45. Lee G, Yoo J, Leslie BJ, Ha T (2011) Single-molecule analysis reveals three phases of DNA degradation by an exonuclease. Nat Chem Biol 7:367–374

    Article  CAS  Google Scholar 

  46. Irvine D, Tuerk C, Gold L (2001) Selexion: systematic evolution of ligands by exponential enrichment with integrated optimization by non-linear analysis. J Mol Biol 222(3):739–761

    Article  Google Scholar 

  47. Vant-Hull B, Payano-Baez A, Davis RH, Gold L (1998) The mathematics of SELEX against complex targets. J Mol Biol 278(3):579–597

    Article  CAS  Google Scholar 

  48. Ozer A, White BS, Lis JT, Shalloway D (2013) Density-dependent cooperative non-specific binding in solid-phase SELEX affinity selection. Nucleic Acids Res 41:7167–7175

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Haynes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ang, A., Ouellet, E., Cheung, K.C., Haynes, C. (2018). Highly Efficient and Reliable DNA Aptamer Selection Using the Partitioning Capabilities of ddPCR: The Hi-Fi SELEX Method. In: Karlin-Neumann, G., Bizouarn, F. (eds) Digital PCR. Methods in Molecular Biology, vol 1768. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7778-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7778-9_30

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7776-5

  • Online ISBN: 978-1-4939-7778-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics