Skip to main content

Orchid Seed and Pollen: A Toolkit for Long-Term Storage, Viability Assessment and Conservation

  • Protocol
  • First Online:
Orchid Propagation: From Laboratories to Greenhouses—Methods and Protocols

Abstract

The development of ex situ preservation techniques for seed and pollen provides a vital addition to orchid conservation using in situ and living collection approaches. The ability to both store and later efficiently distribute germplasm for reintroductions and maintenance of genetic diversity provides a powerful tool that can usefully operate beyond the confines of habitat loss and climate change. Currently a wealth of data and experience exists in both professional and amateur fields alike that requires effective global networking and sustainable resourcing to ensure that all practitioners of orchid conservation benefit. In this chapter we have summarised the current state of knowledge concerning the practice of both orchid seed and pollen storage, emphasising some of the problems that may be encountered. We also describe how current research shows that dry seeds, and potentially pollen, of many species have the capacity to survive in storage for a number of decades, if not longer, at low and cryogenic temperatures. Although within the plant kingdom orchid seeds may still be described as being short-lived, we highlight new techniques for storage and assessment of viability and germination that are continually being developed and applied more broadly to a wider range of species, to improve longevity and enhance measurement techniques. We emphasise throughout the need for more comparative data acquisition, information and interpretation of the variation in responses across the family, so as to help inform the global community of how best to handle orchid germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Koopowitz H (2001) Orchids and their conservation. Timber Press, Oregon

    Google Scholar 

  2. Yam TW, Arditti J, Cameron KM (2009) “The orchids have been a splendid sport”—an alternative look at Charles Darwin’s contribution to orchid biology. Am J Bot 96:2128–2154

    Article  Google Scholar 

  3. Global Strategy for Plant Conservation (2011–2020) https://www.cbd.int/gspc/targets.shtmL

  4. Greatwood J (1984) Extract from the proceedings of the International Orchid Commission, March 1984. Am Orchid Soc Bull 53:737

    Google Scholar 

  5. Swarts ND, Dixon KW (2009) Perspectives on orchid conservation in botanic gardens. Trends Plant Sci 14:590–598

    Article  CAS  Google Scholar 

  6. Marks TR, Seaton PT, Pritchard HW (2014) Desiccation tolerance, longevity and seed-siring ability of entomophilous pollen from UK native orchid species. Ann Bot 114:561–569

    Article  Google Scholar 

  7. Seaton PT (2009) Orchids in peril. Orchid Rev 117:82–84

    Google Scholar 

  8. Ferreira D, Richards M, Seaton PT (2012) Saving Florida’s Cigar Orchid. Orchid Rev 120:158–161

    Google Scholar 

  9. Yam TW (2013) Native Orchids of Singapore—diversity, identification and conservation. National Parks Board, Singapore Botanic Gardens, Singapore

    Google Scholar 

  10. Yam TW, Tay F, Ang P, Soh W (2013) Conservation reintroduction and rediscovery of the native orchids of Singapore—new perspectives on survivorship ecology. In Elliot J, Kurzweil HF, O’Byrne P, Tan KW, Van der Schans AS, Wong SM, Yam TW (Eds) Proceedings of the 20th World Orchid Conference, Singapore, 13–20 November 2011, pp 155–163

    Google Scholar 

  11. Pritchard HW, Poynter ALC, Seaton PT (1999) Inter-specific variation in orchid seed longevity in relation to ultra-drying and cryo-preservation. Lindleyana 14:92–101

    Google Scholar 

  12. Knudson L (1954) Storage and viability of orchid seed. Am Orchid Soc Bull 22:260–260

    Google Scholar 

  13. Pritchard HW, Seaton PT (1993) Orchid seed storage: historical perspective, current status, and future prospects for long-term conservation. Selbyana 14:89–104

    Google Scholar 

  14. Hay F (2004) The seed viability equations: the normal distribution and probits. Millennium Seed Bank Project Kew. http://data.kew.org/sid/viability/SeedViabilityEquationsFHDec04.pdf. Accessed 9 Sept 2016

  15. Hay FR, Mead A, Bloomberg M (2014) Modelling seed germination in response to continuous variables: use and limitations of probit analysis and alternative approaches. Seed Sci Res 24:165–186

    Article  Google Scholar 

  16. Newton R, Hay F, Probert R (2014) Protocol for comparative seed longevity testing. Technical Information Sheet_01. Millennium Seed Bank Partnership: Ardingly

    Google Scholar 

  17. Hay FR, Adams J, Manger K, Probert R (2008) The use of nonsaturated lithium chloride solutions for experimental control of seed water content. Seed Sci Technol 36:737–746

    Article  Google Scholar 

  18. Hay FR, Merritt DJ, Soanes JA, Dixon KW (2010) Comparative longevity of Australian orchid (Orchidaceae) seeds under experimental and low temperature storage conditions. Bot J Linn Soc 164:26–41

    Article  Google Scholar 

  19. Ellis RH, Roberts EH (1980) Improved equations for the prediction of seed longevity. Ann Bot 45:13–30

    Article  Google Scholar 

  20. Pritchard HW, Dickie JB (2003) Predicting seed longevity: the use and abuse of seed viability equations. In: Smith RD et al (eds) Seed conservation: turning science into practice. Royal Botanic Gardens, Kew, pp 653–721

    Google Scholar 

  21. Vendrame WA, Carvalho VS, Dias JMM, Maguire I (2008) Pollination of Dendrobium hybrids using cryopreserved pollen. Hortscience 43:264–267

    Google Scholar 

  22. Franchi GG, Piotto B, Nepi M, Baskin CC, Baskin JM, Pacini E (2011) Pollen and seed desiccation tolerance in relation to degree of developmental arrest, dispersal, and survival. J Exp Bot 62:5267–5281

    Article  CAS  Google Scholar 

  23. Johansen BO (1990) Incompatibility in Dendrobium (Orchidaceae). Bot J Linn Soc 103:165–196

    Article  Google Scholar 

  24. Millner HJ, McCrea AR, Baldwin TC (2015) An investigation of self-incompatibility within the genus Restrepia. Am J Bot 102:487–494

    Article  Google Scholar 

  25. Pritchard HW, Prendergast FG (1989) Factors influencing the germination and storage characteristics of orchid pollen. In: Pritchard HW (ed) Modern methods in orchid conservation: the role of physiology, ecology and management. Cambridge University Press, Cambridge, pp 1–16

    Chapter  Google Scholar 

  26. Cheyne P (2003) Access and benefit-sharing agreements. In: Smith RD, Dickie JB, Linington SH, Pritchard HW, Probert RJ (eds) Seed conservation turning science into practice. The Royal Botanic Gardens, Kew, pp 5–26

    Google Scholar 

  27. Yam TW, Ghani AKA, Ichihashi S, Thame A, Rao AN, Avadhani PN, Nair H, Hew CS, Arditti J, Tatarenko IV (2007) Time from pollination to fruit ripening, seed maturation and germination. In: Cameron KM, Arditti J, Kull T (eds) Orchid biology: reviews and perspectives, IX. Botanical Garden Press, New York, pp 433–506

    Google Scholar 

  28. Arditti J (1992) Fundamentals of orchid biology. Wiley, New York, p 539

    Google Scholar 

  29. Ferdy JB, Loriot S, Sandmeier M, Lefranc M, Raquin C (2001) Inbreeding depression in a rare deceptive orchid. Can J Bot 79:1181–1188

    Google Scholar 

  30. Cozzolino S, Widmer A (2005) Orchid diversity: an evolutionary consequence of deception? Trends Ecol Evol 20:487–494

    Article  Google Scholar 

  31. Sletvold N, Grindeland JM, Zu P, Ågren J (2012) Strong inbreeding depression and local outbreeding depression in the rewarding orchid Gymnadenia conopsea. Conserv Genet 13:1305–1315

    Article  Google Scholar 

  32. Arditti J (1992) Fundamentals of orchid biology. Wiley, New York, pp 303–304

    Google Scholar 

  33. Wexler A, Hasegawa S (1954) Relative humidity-temperature relationships of some saturated salt solutions in the temperature range 0 to 50 °C. J Res Nat Bureau of Standards 53, No. 1, Research paper 2512

    Google Scholar 

  34. Popova E, Kim HH, Saxena PK et al (2016) Frozen beauty: the cryobiotechnology of orchid diversity. Biotechnol Adv 34:380–403

    Article  Google Scholar 

  35. Seaton PT, Hailes NSJ (1989) Effect of temperature and moisture content on the viability of Cattleya aurantiaca seed. Modern methods in orchid conservation: the role of physiology, ecology and management. Cambridge University Press, Cambridge, pp 17–29

    Google Scholar 

  36. Seaton PT, Pritchard HW (2008) Life in the freezer. Orchids 67:762–773

    Google Scholar 

  37. Popova EV, Han SH, Moltchanova E et al (2013) Systematic overestimation of Salicaceae seed survival using radicle emergence in response to drying and storage: implications for ex situ seed banking. Acta Physiol Plant 35:3015–3025

    Article  Google Scholar 

  38. Arditti J (1982) In: Arditti J (ed) Appendix: Orchid seed germination and seedling culture—a manual in orchid biology—reviews and perspectives II. Cornell University Press, Ithaca, NY, pp 242–370

    Google Scholar 

  39. Nadarajan J, Wood S, Marks TR, Seaton PT, Pritchard HW (2011) Nutritional requirements for in vitro seed germination of 12 terrestrial, lithophytic and epiphytic orchids. J Trop For Sci 23:204–212

    Google Scholar 

  40. Gamborg OL, Mille RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:1113–1127

    Article  Google Scholar 

  41. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  42. Knudson L (1946) A new nutrient solution for the germination of orchid seeds. Bot Gaz 73:1–25

    Article  Google Scholar 

  43. Van Waes JM, Debergh PC (1986) In vitro germination of some Western European orchids. Physiol Plant 67:253–261

    Article  Google Scholar 

  44. Malmgren S (1996) Orchid propagation: theory and practice. In: Allen C (ed) North American native orchids: propagation and production. North American Native Terrestrial Orchid Conference, Germantown, Maryland, pp 63–71

    Google Scholar 

  45. Seaton PT, Ramsay M (2005) Growing orchids from seed. Royal Botanic Gardens, Kew

    Google Scholar 

  46. Seaton PT, Ramsay M (2009) Cultivo de orquídeas por semillas. Royal Botanic Gardens, Kew

    Google Scholar 

  47. Machado-Neto NB, Custódio CC (2005) A medium for non-commercial sowing of orchid seed. Selbyana 26:316–317

    Google Scholar 

  48. Maguire JD (1962) Speed of germination aid in selection and evaluation of seedling emergence and vigor. Crop Sci 2:176–177

    Article  Google Scholar 

  49. Hosomi ST, Santos RB, Custodio CC, Seaton PT, Marks TR, Machado-Neto NB (2011) Preconditioning Cattleya seeds to improve the efficacy of the tetrazolium test for viability. Seed Sci Technol 39:178–189

    Article  Google Scholar 

  50. Hosomi ST, Custodio CC, Seaton PT, Marks TR, Machado-Neto NB (2012) Improved assessment of viability and germination of Cattleya (Orchidaceae) seeds following storage. In Vitro Cell Dev Biol Plant 48:127–136

    Article  Google Scholar 

  51. Custódio CC, Marks TR, Pritchard HW, Hosomi ST, Machado-Neto NB (2016) Improved tetrazolium viability testing in orchid seeds with a thick carapace (Dactylorhiza fuchsii) or dark seed coat (Vanda curvifolia). Seed Sci Technol 44:1–12

    Article  Google Scholar 

  52. Lallana VH, Garcia LF (2013) Pre-treatments effect in Trichocentrum jonesianum seeds viability test. Invest Agrar 15:120–132

    Google Scholar 

  53. Soares JS, Rosa YBCJ, Tatara MB, Sorgato JC, Lemes CSR (2014) Viability identification of orchid seeds by the tetrazolium test. Semina Ciênc Agrár 35:2275–2284

    Article  Google Scholar 

  54. Wood CB, Pritchard HW, Miller AP (2000) Simultaneous preservation of orchid seed and fungal symbionts using encapsulation-dehydration is dependent on moisture content and storage temperature. CryoLetters 21:125–136

    CAS  PubMed  Google Scholar 

  55. Sommerville KD, Siemon JP, Wood CB, Offord CA (2008) Simultaneous encapsulation of seed and mycorrhizal fungi for long-term storage and propagation of terrestrial orchids. Aust J Bot 56:609–615

    Article  Google Scholar 

  56. Saiprasad GVS, Polisetty R (2003) Propagation of three orchid genera use in encapsulated protocorm-like bodies. In Vitro Cell Dev Biol Plant 39:42–48

    Article  Google Scholar 

  57. Walters C, Reilley AA, Reeves PA, Baszcak J, Richards CM (2006) The utility of aged seeds in DNA banks. Seed Sci Res 16:169–178

    Article  CAS  Google Scholar 

  58. Hay FR, Probert RJ (1995) Seed maturity and the effects of different drying conditions on desiccation tolerance and seed longevity in Foxglove (Digitalis purpurea L.) Ann Bot 76:639–647

    Article  Google Scholar 

  59. Gold K, Manger K (2014) Selecting containers for long-term seed storage. Technical Information Sheet_06. http://www.kew.org/sites/default/files/06-Containers%20web.pdf

  60. Sutcliffe V, Adams J (2014) Low-cost monitors of seed moisture status. Technical Information Sheet_07. http://www.kew.org/sites/default/files/07-Low-cost%20moisture%20monitors%20web.pdf

  61. Rasmussen HN (1992) Seed dormancy patterns in Epipactis palustris (Orchidaceae): requirements for germination and establishment of mycorrhizal. Physiol Plant 86:161–167

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Seaton, P.T., Hosomi, S.T., Custódio, C.C., Marks, T.R., Machado-Neto, N.B., Pritchard, H.W. (2018). Orchid Seed and Pollen: A Toolkit for Long-Term Storage, Viability Assessment and Conservation. In: Lee, YI., Yeung, ET. (eds) Orchid Propagation: From Laboratories to Greenhouses—Methods and Protocols. Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7771-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7771-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7770-3

  • Online ISBN: 978-1-4939-7771-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics