Skip to main content

Characterizing Protein-Protein Interactions Using Deep Sequencing Coupled to Yeast Surface Display

  • Protocol
  • First Online:
Protein Complex Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1764))

Abstract

In this chapter, we discuss a method to determine the affinity and specificity of nearly all single-point mutants for a full-length protein binder. This method combines deep sequencing, comprehensive mutagenesis, yeast surface display, and fluorescence-activated cell sorting. This approach has been used to study sequence-function relationships for protein-protein interactions. The data can be used to determine the fine conformational epitope on the protein binder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weiss GA, Watanabe CK, Zhong A et al (2000) Rapid mapping of protein functional epitopes by combinatorial alanine scanning. Proc Natl Acad Sci U S A 97:8950–8954. https://doi.org/10.1073/pnas.160252097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Chao G, Cochran JR, Dane Wittrup K (2004) Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. J Mol Biol 342:539–550. https://doi.org/10.1016/j.jmb.2004.07.053

    Article  PubMed  CAS  Google Scholar 

  3. Fowler DM, Fields S (2014) Deep mutational scanning: a new style of protein science. Nat Methods 11:801–807. https://doi.org/10.1038/nmeth.3027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Whitehead TA, Chevalier A, Song Y et al (2012) Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing. Nat Biotechnol 30:543–548. https://doi.org/10.1038/nbt.2214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Van Blarcom T, Rossi A, Foletti D et al (2015) Precise and efficient antibody epitope determination through library design, yeast display and next-generation sequencing. J Mol Biol 427:1513–1534. https://doi.org/10.1016/j.jmb.2014.09.020

    Article  PubMed  CAS  Google Scholar 

  6. Doolan KM, Colby DW (2015) Conformation-dependent epitopes recognized by prion protein antibodies probed using mutational scanning and deep sequencing. J Mol Biol 427:328–340. https://doi.org/10.1016/j.jmb.2014.10.024

    Article  PubMed  CAS  Google Scholar 

  7. Kowalsky CA, Faber MS, Nath A et al (2015) Rapid fine conformational epitope mapping using comprehensive mutagenesis and deep sequencing. J Biol Chem 290:26457–26470. https://doi.org/10.1074/jbc.M115.676635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Fowler DM, Araya CL, Fleishman SJ et al (2010) High-resolution mapping of protein sequence-function relationships. Nat Methods 7:741–746. https://doi.org/10.1038/nMeth.1492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Chao G, Lau WL, Hackel BJ et al (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1:755–768. https://doi.org/10.1038/nprot.2006.94

    Article  PubMed  CAS  Google Scholar 

  10. Van DJA, Wittrup KD (2014) Yeast surface display for antibody isolation: library construction, library screening, and affinity maturation. Methods Mol Biol 1131:151–181. https://doi.org/10.1007/978-1-62703-992-5_10

    Article  CAS  Google Scholar 

  11. Mata-Fink J, Kriegsman B, Yu HX et al (2013) Rapid conformational epitope mapping of anti-gp120 antibodies with a designed mutant panel displayed on yeast. J Mol Biol 425:444–456. https://doi.org/10.1016/j.jmb.2012.11.010

    Article  PubMed  CAS  Google Scholar 

  12. Adams RM, Mora T, Walczak AM et al (2016) Measuring the sequence-affinity landscape of antibodies with massively parallel titration curves. Elife 5:5980–5985. https://doi.org/10.7554/eLife.23156

    Article  Google Scholar 

  13. Wrenbeck EE, Klesmith JR, Stapleton JA et al (2016) Plasmid-based one-pot saturation mutagenesis. Nat Methods 13:928–930. https://doi.org/10.1038/nmeth.4029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34. https://doi.org/10.1038/nprot.2007.13

    Article  PubMed  CAS  Google Scholar 

  15. Klesmith JR, Bacik J-P, Wrenbeck EE et al (2017) Trade-offs between enzyme fitness and solubility illuminated by deep mutational scanning. Proc Natl Acad Sci U S A 114:2265–2270. https://doi.org/10.1073/pnas.1614437114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wrenbeck E, Klesmith J, Stapleton J, Whitehead T (2016) Nicking mutagenesis: comprehensive single-site saturation mutagenesis. Protoc Exch. https://doi.org/10.1038/protex.2016.061

  17. Sambrook J, Russell DW (2006) Transformation of E. coli by electroporation. CSH Protoc 2006:pdb.prot3933. https://doi.org/10.1101/pdb.prot3933

    Article  PubMed  Google Scholar 

  18. Kowalsky CA, Klesmith JR, Stapleton JA et al (2015) High-resolution sequence-function mapping of full-length proteins. PLoS One 10:e0118193. https://doi.org/10.1371/journal.pone.0118193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Fowler DM, Araya CL, Gerard W, Fields S (2011) Enrich: software for analysis of protein function by enrichment and depletion of variants. Bioinformatics 27:3430–3431. https://doi.org/10.1093/bioinformatics/btr577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kowalsky CA, Whitehead TA (2016) Determination of binding affinity upon mutation for type I dockerin-cohesin complexes from Clostridium thermocellum and Clostridium cellulolyticum using deep sequencing. Proteins 84:1914–1928. https://doi.org/10.1002/prot.25175

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF CAREER (Award #1254238) to T.A.W. and a NIH T32 Biotechnology Training Grant (Award # T32-GM110523) to A.M.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy A. Whitehead .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Medina-Cucurella, A.V., Whitehead, T.A. (2018). Characterizing Protein-Protein Interactions Using Deep Sequencing Coupled to Yeast Surface Display. In: Marsh, J. (eds) Protein Complex Assembly. Methods in Molecular Biology, vol 1764. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7759-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7759-8_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7758-1

  • Online ISBN: 978-1-4939-7759-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics