Skip to main content

Spectral and Imaging Flow Cytometry in Phytoplankton Research

  • Protocol
  • First Online:
Cellular Heterogeneity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1745))

Abstract

Spectral and imaging flow cytometry are emerging technologies that allow quantifying spectral, fluorescent, and/or morphological parameters of heterogeneous cellular populations. The protocol describes a detailed step-by-step analysis of microalgae using these techniques and examples from our laboratory (Aphanizomenon sp., Cryptomonas pyrenoidifera, and Chlorella sp.). Moreover, the chapter will be helpful to scientists who want to perform spectral flow cytometry and apply principal component analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    Article  CAS  PubMed  Google Scholar 

  2. Béjà O, Suzuki M, Heidelberg J, Nelson W, Preston C, Hamada T et al (2002) Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415:630–633

    Article  PubMed  Google Scholar 

  3. Irigoien X, Huisman J, Harris R (2004) Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429:863–867

    Article  CAS  PubMed  Google Scholar 

  4. Davey HM, Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 60:641–696

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sukenik A, Hadas O, Stojkovic S, Malinsky-Rushansky N, Viner-Motzini Y, Beardall J (2009) Fluorescence microscopy reveals variations in cellular composition during formation of akinetes in the cyanobacterium Aphanizomenon ovalisporum. Eur J Phycol 44:309–317

    Article  CAS  Google Scholar 

  6. Stolte W, Kraay GW, Noordeloos AA, Riegman R (2000) Genetic and physiological variation in pigment composition of Emiliania huxleyi (Prymnesiophyceae) and the potential use of its pigment ratios as a quantitative physiological marker. J Phycol 36:529–539

    Article  CAS  Google Scholar 

  7. Dapena C, Bravo I, Cuadrado A, Figueroa RI (2015) Nuclear and cell morphological changes during the cell cycle and growth of the toxic dinoflagellate Alexandrium minutum. Protist 166:146–160

    Article  CAS  PubMed  Google Scholar 

  8. Brussaard CP, Marie D, Thyrhaug R, Bratbak G (2001) Flow cytometric analysis of phytoplankton viability following viral infection. Aquat Microb Ecol 26:157–166

    Article  Google Scholar 

  9. Veldhuis MJ, Cucci TL, Sieracki ME (1997) Cellular DNA content of marine phytoplankton using two new fluorochromes: taxonomic and ecological implications. J Phycol 33:527–541

    Article  CAS  Google Scholar 

  10. Franklin DJ, Airs RL, Fernandes M, Bell TG, Bongaerts RJ, Berges JA, Malin G (2012) Identification of senescence and death in Emiliania huxleyi and Thalassiosira pseudonana: cell staining, chlorophyll alterations, and dimethylsulfoniopropionate (DMSP) metabolism. Limnol Oceanogr 57:305–317

    Article  CAS  Google Scholar 

  11. Zheng W, Rasmussen U, Zheng S, Bao X, Chen B, Gao Y, Guan X, Larsson J, Bergman B (2013) Multiple modes of cell death discovered in a prokaryotic (cyanobacterial) endosymbiont. PLoS One 8:e66147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee DH, Bae CY, Han JI, Park JK (2013) In situ analysis of heterogeneity in the lipid content of single green microalgae in alginate hydrogel microcapsules. Anal Chem 85:8749–8756

    Article  CAS  PubMed  Google Scholar 

  13. Traller JC, Hildebrand M (2013) High throughput imaging to the diatom Cyclotella cryptica demonstrates substantial cell-to-cell variability in the rate and extent of triacylglycerol accumulation. Algal Res 2:244–252

    Article  Google Scholar 

  14. Ning SB, Guo HL, Wang L, Song YC (2002) Salt stress induces programmed cell death in prokaryotic organism Anabaena. J Appl Microbiol 93:15–28

    Article  CAS  PubMed  Google Scholar 

  15. Franklin DJ (2014) Explaining the causes of cell death in cyanobacteria: what role for asymmetric division? J Plankton Res 36:11–17

    Article  CAS  Google Scholar 

  16. Bidle KD (2016) Programmed cell death in unicellular phytoplankton. Curr Biol 26:R594–R607

    Article  CAS  PubMed  Google Scholar 

  17. Ross C, Santiago-Vázquez L, Paul V (2006) Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aeruginosa. Aquat Toxicol 78:66–73

    Article  CAS  PubMed  Google Scholar 

  18. Ding Y, Gan N, Li J, Sedmak B, Song L (2012) Hydrogen peroxide induces apoptotic-like cell death in Microcystis aeruginosa (Chroococcales, Cyanobacteria) in a dose-dependent manner. Phycologia 51:567–575

    Article  CAS  Google Scholar 

  19. Sieracki CK, Sieracki ME, Yentsch CS (1998) An imaging-in-flow system for automated analysis of marine microplankton. Mar Ecol Prog Ser 168:285–296

    Article  Google Scholar 

  20. Dashkova V, Malashenkov D, Poulton N, Vorobjev I, Barteneva NS (2017) Imaging flow cytometry for phytoplankton analysis. Methods 112:188–200

    Article  CAS  PubMed  Google Scholar 

  21. George TC, Basiji DA, Hall BE, Lynch DH, Ortyn WE, Perry DJ, Seo MJ, Zimmerman CA, Morrissey PJ (2004) Distinguishing modes of cell death using the ImageStream® multispectral imaging flow cytometer. Cytometry A 59:237–245

    Article  PubMed  Google Scholar 

  22. Zmerli Triki H, Laabir M, Daly-Yahia OK (2015) Life history, excystment features, and growth characteristics of the Mediterranean harmful dinoflagellate Alexandrium pseudogonyaulax. J Phycol 51:980–989

    Article  PubMed  Google Scholar 

  23. Hildebrand M, Davis A, Abbriano R, Pugsley HR, Traller JC, Smith SR, Shrestha RP, Cook O, Sánchez-Alvarez EL, Manandhar-Shrestha K, Alderete B (2016) Applications of imaging flow cytometry for microalgae. In: Barteneva NS, Vorobjev IA (eds) Imaging flow cytometry: methods and protocols. Humana Press, New York, pp 47–67

    Chapter  Google Scholar 

  24. Dashkova V, Segev E, Malashenkov D, Kolter R, Vorobjev I, Barteneva NS (2016) Microalgal cytometric analysis in the presence of endogenous autofluorescent pigments. Algal Res 19:370–380

    Article  Google Scholar 

  25. Paau AS, Oro J, Cowles JR (1978) Application of flow microflorometry to the study of algal cells and isolated chloroplasts. J Exp Bot 29:1011–1020

    Article  CAS  Google Scholar 

  26. Trask BJ, Van den Engh GJ, Elgershuizen JH (1982) Analysis of phytoplankton by flow cytometry. Cytometry 2:258–264

    Article  CAS  PubMed  Google Scholar 

  27. Yentsch CM, Horan PK, Muirhead K, Dortch Q, Haugen E, Legendre L, Murphy LS, Perry MJ, Phinney DA, Pomponi SA, Spinrad RW (1983) Flow cytometry and cell sorting: a technique for analysis and sorting of aquatic particles. Limnol Oceanogr 28:1275–1280

    Article  Google Scholar 

  28. Olson RJ, Frankel SL, Chisholm SW, Shapiro HM (1983) An inexpensive flow cytometer for the analysis of fluorescence signals in phytoplankton: chlorophyll and DNA distributions. J Exp Mar Biol Ecol 68:129–144

    Article  CAS  Google Scholar 

  29. Yentsch CM, Horan PK (1989) Cytometry in the aquatic sciences. Cytometry 10:497–499

    Article  CAS  PubMed  Google Scholar 

  30. Olson RJ, Zettler ER, Chisholm SW, Dusenberry JA (1991) Advances in oceanography through flow cytometry. In: Demers S (ed) Particle analysis in oceanography, vol 27 of the NATO ASI series. Springer, Berlin Heidelberg, pp 351–399

    Chapter  Google Scholar 

  31. Vives-Rego J, Lebaron P, Nebe-von Caron G (2000) Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol Rev 24:429–448

    Article  CAS  PubMed  Google Scholar 

  32. Hyka P, Lickova S, Přibyl P, Melzoch K, Kovar K (2013) Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol Adv 31:2–16

    Article  CAS  PubMed  Google Scholar 

  33. Olson RJ, Sosik HM (2007) A submersible imaging-in-flow instrument to analyze nano-and microplankton: imaging FlowCytobot. Limnol Oceanogr Methods 5:195–203

    Article  Google Scholar 

  34. Robinson JP (2004) Multispectral cytometry: the next generation. Biophotonics Int 11:36–40

    Google Scholar 

  35. Goddard G, Martin JC, Naivar M, Goodwin PM, Graves SW, Habbersett R, Nolan JP, Jett JH (2006) Single particle high resolution spectral analysis flow cytometry. Cytometry A 69:842–851

    Article  PubMed  Google Scholar 

  36. Futamura K, Sekino M, Hata A, Ikebuchi R, Nakanishi Y, Egawa G, Kabashima K, Watanabe T, Furuki M, Tomura M (2015) Novel full spectral flow cytometry with multiple spectrally adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement. Cytometry A 87:830–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sanders CK, Mourant JR (2013) Advantages of full spectrum flow cytometry. J Biomed Opt 18:037004

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nolan JP, Condello D, Duggan E, Naivar M, Novo D (2013) Visible and near infrared fluorescence spectral flow cytometry. Cytometry A 83:253–264

    Article  PubMed  Google Scholar 

  39. Talmi Y (1975) Applicability of TV-type multichannel detectors to spectroscopy. Anal Chem 47:A658

    Article  Google Scholar 

  40. Wade CG, Rhyne RH, Woodruff WH, Bloch DP, Bartolomew JC (1979) Spectra of cells in flow cytometry using a vidicon detector. J Histochem Cytochem 27:1049–1052

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support for this work was provided by grants from MES of Republic of Kazakhstan #4350/ГФ4 and PI NURIS 055 project #100/14 to N.S.B. We are grateful to Steve Conway and Greg Veltri, Sony Biotechnology Inc., and John Daley, Dana-Farber Cancer Institute, for access to spectral flow cytometer and to Brian Hall and Richard De Marco (Amnis-Merck) for their advice. Veronika Dashkova, Ivan A. Vorobjev, and Natasha S. Barteneva contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ivan A. Vorobjev or Natasha S. Barteneva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dashkova, V., Clapper, J., Vorobjev, I.A., Barteneva, N.S. (2018). Spectral and Imaging Flow Cytometry in Phytoplankton Research. In: Barteneva, N., Vorobjev, I. (eds) Cellular Heterogeneity. Methods in Molecular Biology, vol 1745. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7680-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7680-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7679-9

  • Online ISBN: 978-1-4939-7680-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics