Skip to main content

Guidelines for Inferring and Characterizing a Family of Bacterial trans-Acting Small Noncoding RNAs

  • Protocol
  • First Online:
Bacterial Regulatory RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1737))

Abstract

So far, every sequenced bacterial transcriptome encompasses hundreds of small regulatory noncoding RNAs (sRNAs). From those sRNAs that have been already characterized, we learned that their regulatory functions could span over almost every bacterial process, mostly acting at the posttranscriptional control of gene expression (Wagner and Romby, Adv Genet 90:133–208, 2015). Canonical molecular mechanisms of sRNA action have been described to rely on both sequence and/or structural traits of the RNA molecule. As for protein-coding genes, the conservation of sRNAs among species suggests conserved and adjusted functions across evolution. Knowing the phylogenetic distribution of an sRNA gene and how its functional traits have evolved may help to get a broad picture of its biological role in each single species. Here, we present a simple computational workflow to identify close and distant sRNA homologs present in sequenced bacterial genomes, which allows defining novel sRNA families. This strategy is based on the use of Covariance Models (CM) and assumes the conservation of sequence and structure of functional sRNA genes throughout evolution. Moreover, by carefully inspecting the conservation of the close genomic context of every member of the RNA family and how the patterns of microsynteny follow the path of species evolution, it is possible to define subgroups of sRNA orthologs, which in turn enables the definition of RNA subfamilies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wagner EG, Romby P (2015) Small RNAs in bacteria and archaea: who they are, what they do, and how they do it. Adv Genet 90:133–208. https://doi.org/10.1016/bs.adgen.2015.05.001

    PubMed  Google Scholar 

  2. Peer A, Margalit H (2014) Evolutionary patterns of Escherichia coli small RNAs and their regulatory interactions. RNA 20(7):994–1003. https://doi.org/10.1261/rna.043133.113

  3. Lagares A Jr, Roux I, Valverde C (2016) Phylogenetic distribution and evolutionary pattern of an alpha-proteobacterial small RNA gene that controls polyhydroxybutyrate accumulation in Sinorhizobium meliloti. Mol Phylogenet Evol 99:182–193. https://doi.org/10.1016/j.ympev.2016.03.026

    Article  CAS  PubMed  Google Scholar 

  4. Updegrove TB, Shabalina SA, Storz G (2015) How do base-pairing small RNAs evolve? FEMS Microbiol Rev 39(3):379–391. https://doi.org/10.1093/femsre/fuv014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eggenhofer F, Hofacker IL, Honer Z, Siederdissen C (2016) RNAlien - unsupervised RNA family model construction. Nucleic Acids Res 44(17):8433–8441. https://doi.org/10.1093/nar/gkw558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eddy SR, Durbin R (1994) RNA sequence analysis using covariance models. Nucleic Acids Res 22(11):2079–2088. https://doi.org/10.1093/nar/22.11.2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, Floden EW, Gardner PP, Jones TA, Tate J, Finn RD (2015) Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43(Database issue):D130–D137. https://doi.org/10.1093/nar/gku1063

    Article  CAS  PubMed  Google Scholar 

  8. Hochsmann T, Hochsmann M, Giegerich R (2006) Thermodynamic matchers: strengthening the significance of RNA folding energies. Comput Syst Bioinformatics Conf:111–121

    Google Scholar 

  9. Nawrocki EP, Eddy SR (2013) Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29(22):2933–2935. https://doi.org/10.1093/bioinformatics/btt509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smith C, Heyne S, Richter AS, Will S, Backofen R (2010) Freiburg RNA tools: a web server integrating INTARNA, EXPARNA and LOCARNA. Nucleic Acids Res 38(Web Server):W373–W377. https://doi.org/10.1093/nar/gkq316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  Google Scholar 

  12. Overmars L, Kerkhoven R, Siezen RJ, Francke C (2013) MGcV: the microbial genomic context viewer for comparative genome analysis. BMC Genomics 14:209. https://doi.org/10.1186/1471-2164-14-209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reese MG (2001) Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 26(1):51–56. https://doi.org/10.1016/S0097-8485(01)00099-7

    Article  CAS  PubMed  Google Scholar 

  14. Naville M, Ghuillot-Gaudeffroy A, Marchais A, Gautheret D (2011) ARNold: a web tool for the prediction of Rho-independent transcription terminators. RNA Biol 8(1):11–13

    Article  CAS  PubMed  Google Scholar 

  15. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28(1):33–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285. https://doi.org/10.1093/nar/gkv1344

    Article  CAS  PubMed  Google Scholar 

  17. Nakhleh L (2013) Computational approaches to species phylogeny inference and gene tree reconciliation. Trends Ecol Evol 28(12):719–728. https://doi.org/10.1016/j.tree.2013.09.004

    Article  PubMed  Google Scholar 

  18. Ravenhall M, Škunca N, Lassalle F, Dessimoz C (2015) Inferring Horizontal Gene Transfer. PLoS Comput Biol 11(5):e1004095. https://doi.org/10.1371/journal.pcbi.1004095

    Article  PubMed  PubMed Central  Google Scholar 

  19. Woese CR (1987) Bacterial evolution. Microbiol Rev 51(2):221–271

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Lagares Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lagares, A., Valverde, C. (2018). Guidelines for Inferring and Characterizing a Family of Bacterial trans-Acting Small Noncoding RNAs. In: Arluison, V., Valverde, C. (eds) Bacterial Regulatory RNA. Methods in Molecular Biology, vol 1737. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7634-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7634-8_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7633-1

  • Online ISBN: 978-1-4939-7634-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics