Skip to main content

Using Ex Vivo Kidney Slices to Study AMPK Effects on Kidney Proteins

  • Protocol
  • First Online:
AMPK

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1732))

Abstract

The ex vivo kidney slice technique has been used extensively in the fields of kidney physiology and cell biology. Our group and others have used this method to study epithelial traffic of transport proteins in situ in kidney tissue. In this methodology chapter, we summarize our adaptation of this classic protocol for the study of the effect of AMPK in the modulation of transport protein regulation, especially in kidney epithelial cells. Briefly, slices were obtained by sectioning freshly harvested rodent (rat or mouse) kidneys using a Stadie-Riggs tissue slicer. The harvested kidney and the kidney slices are kept in a physiological buffer equilibrated with 5% CO2 at body temperature (37 °C) in the presence of different AMPK activating agents vs. vehicle control followed by rapid freezing or fixation of the slices to prevent non-specific AMPK activation. Thus, homogenates of these frozen slices can be used to study AMPK activation status in the tissue as well as the downstream effects of AMPK on kidney proteins via biochemical techniques, such as immunoblotting and immunoprecipitation. Alternatively, the fixed slices can be used to evaluate AMPK-mediated subcellular traffic changes of epithelial transport proteins via immunolabeling followed by confocal microscopy. The resulting micrographs can then be used for systematic quantification of AMPK-induced changes in subcellular localization of transport proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gerich JE, Meyer C, Woerle HJ, Stumvoll M (2001) Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care 24(2):382–391

    Article  CAS  PubMed  Google Scholar 

  2. Mandel LJ (1986) Primary active sodium transport, oxygen consumption, and ATP: coupling and regulation. Kidney Int 29(1):3–9. https://doi.org/10.1038/ki.1986.2

    Article  CAS  PubMed  Google Scholar 

  3. Hallows KR (2005) Emerging role of AMP-activated protein kinase in coupling membrane transport to cellular metabolism. Curr Opin Nephrol Hypertens 14(5):464–471. https://doi.org/10.1097/01.mnh.0000174145.14798.64

    Article  CAS  PubMed  Google Scholar 

  4. Hardie DG, Scott JW, Pan DA, Hudson ER (2003) Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett 546(1):113–120. https://doi.org/10.1016/s0014-5793(03)00560-x

    Article  CAS  PubMed  Google Scholar 

  5. Bens M, Vandewalle A (2008) Cell models for studying renal physiology. Pflugers Arch - Eur J Physiol 457(1):1–15. https://doi.org/10.1007/s00424-008-0507-4

    Article  CAS  Google Scholar 

  6. Gekle M, Wünsch S, Oberleithner H, Silbernagl S (1994) Characterization of two MDCK-cell subtypes as a model system to study principal cell and intercalated cell properties. Pflugers Arch 428(2):157–162

    Article  CAS  PubMed  Google Scholar 

  7. Guntupalli J, Onuigbo M, Wall S, Alpern RJ, TD DB Jr (1997) Adaptation to low-K+ media increases H(+)-K(+)-ATPase but not H(+)-ATPase-mediated pHi recovery in OMCD1 cells. Am J Phys 273(2 Pt 1):C558–C571

    Article  CAS  Google Scholar 

  8. Edwards JC, van Adelsberg J, Rater M, Herzlinger D, Lebowitz J, al-Awqati Q (1992) Conditional immortalization of bicarbonate-secreting intercalated cells from rabbit. Am J Phys 263(2 Pt 1):C521–C529

    Article  CAS  Google Scholar 

  9. Sun X, Yang LV, Tiegs BC, Arend LJ, McGraw DW, Penn RB, Petrovic S (2010) Deletion of the pH sensor GPR4 decreases renal acid excretion. J Am Soc Nephrol 21(10):1745–1755. https://doi.org/10.1681/asn.2009050477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schwartz JH, Li G, Yang Q, Suri V, Ross JJ, Alexander EA (2007) Role of SNAREs and H -ATPase in the targeting of proton pump-coated vesicles to collecting duct cell apical membrane. Kidney Int 72(11):1310–1315. https://doi.org/10.1038/sj.ki.5002500

    Article  CAS  PubMed  Google Scholar 

  11. Gong F, Alzamora R, Smolak C, Li H, Naveed S, Neumann D, Hallows KR, Pastor-Soler NM (2010) Vacuolar H+-ATPase apical accumulation in kidney intercalated cells is regulated by PKA and AMP-activated protein kinase. Am J Physiol Renal Physiol 298(5):F1162–F1169. https://doi.org/10.1152/ajprenal.00645.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alzamora R, Gong F, Rondanino C, Lee JK, Smolak C, Pastor-Soler NM, Hallows KR (2010) AMP-activated protein kinase inhibits KCNQ1 channels through regulation of the ubiquitin ligase Nedd4-2 in renal epithelial cells. Am J Physiol Renal Physiol 299(6):F1308–F1319. https://doi.org/10.1152/ajprenal.00423.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Al-Bataineh MM, Li H, Ohmi K, Gong F, Marciszyn AL, Naveed S, Zhu X, Neumann D, Wu Q, Cheng L, Fenton RA, Pastor-Soler NM, Hallows KR (2016) Activation of the metabolic sensor AMP-activated protein kinase inhibits aquaporin-2 function in kidney principal cells. Am J Physiol Renal Physiol 311(5):F890–F900. https://doi.org/10.1152/ajprenal.00308.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pastor-Soler NM, Hallows KR (2012) AMP-activated protein kinase regulation of kidney tubular transport. Curr Opin Nephrol Hypertens 21(5):523–533. https://doi.org/10.1097/MNH.0b013e3283562390

    Article  CAS  PubMed  Google Scholar 

  15. Stein SC, Woods A, Jones NA, Davison MD, Carling D (2000) The regulation of AMP-activated protein kinase by phosphorylation. Biochem J 345(3):437. https://doi.org/10.1042/0264-6021:3450437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mount PF (2005) Acute renal ischemia rapidly activates the energy sensor AMPK but does not increase phosphorylation of eNOS-Ser1177. Am J Physiol Renal Physiol 289(5):F1103–F1115. https://doi.org/10.1152/ajprenal.00458.2004

    Article  CAS  PubMed  Google Scholar 

  17. Lotz C, Fisslthaler B, Redel A, Smul TM, Stumpner J, Pociej J, Roewer N, Fleming I, Kehl F, Lange M (2011) Activation of adenosine-monophosphate–activated protein kinase abolishes desflurane-induced preconditioning against myocardial infarction in vivo. J Cardiothorac Vasc Anesth 25(1):66–71. https://doi.org/10.1053/j.jvca.2010.02.007

    Article  CAS  PubMed  Google Scholar 

  18. Breton S, Brown D (1998) Cold-induced microtubule disruption and relocalization of membrane proteins in kidney epithelial cells. J Am Soc Nephrol 9(2):155–166

    CAS  PubMed  Google Scholar 

  19. Sachs AN, Pisitkun T, Hoffert JD, Yu M-J, Knepper MA (2008) LC-MS/MS analysis of differential centrifugation fractions from native inner medullary collecting duct of rat. Am J Physiol Renal Physiol 295(6):F1799–F1806. https://doi.org/10.1152/ajprenal.90510.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was in part supported by the Wright Foundation, the Dean’s Pilot Project Program, and the Department of Medicine at the Keck School of Medicine of USC. We thank Dr. Kennneth R. Hallows, Dr. Alicia McDonough, and Dona Ralph for technical advice and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuria M. Pastor-Soler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rao, R., Omi, K., Rajani, R., Li, H., Pastor-Soler, N.M. (2018). Using Ex Vivo Kidney Slices to Study AMPK Effects on Kidney Proteins. In: Neumann, D., Viollet, B. (eds) AMPK. Methods in Molecular Biology, vol 1732. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7598-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7598-3_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7597-6

  • Online ISBN: 978-1-4939-7598-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics