Skip to main content

Identification of Protease Cleavage Sites and Substrates in Cancer by Carboxy-TAILS (C-TAILS)

  • Protocol
  • First Online:
Proteases and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1731))

Abstract

Determination of drug targets and development of novel therapeutics for the treatment of different cancers are actively ongoing areas of research. Proteases being the second largest group of enzymes in humans present themselves as attractive targets for blocking and activation to treat malignancies. However, determination of the protease cleavage substrates is often missed by utilizing conventional modern proteomic approaches. The relatively low abundance of proteolytically processed, and mostly semi-tryptic, peptides compared to tryptic peptides generated in shotgun proteomics compounded with their poorer identification rates makes the identification of such critical peptides challenging and so are mostly overlooked. Our laboratory introduced Terminal Amine Isotopic Labeling of Substrates (TAILS) to identify N-terminal peptides from cleavage events. In this chapter we present a protocol from our complementary method carboxy-TAILS (C-TAILS) to identify C-terminal peptides in metabolically labeled cancer cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Krueger KE, Srivastava S (2006) Posttranslational protein modifications: current implications for cancer detection, prevention, and therapeutics. Mol Cell Proteomics 5(10):1799–1810. https://doi.org/10.1074/mcp.R600009-MCP200

    Article  CAS  PubMed  Google Scholar 

  2. Burotto M, Chiou VL, Lee JM et al (2014) The MAPK pathway across different malignancies: a new perspective. Cancer 120(22):3446–3456. https://doi.org/10.1002/cncr.28864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dennis JW, Laferte S, Waghorne C et al (1987) Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 236(4801):582–585

    Article  CAS  PubMed  Google Scholar 

  4. Ma X, Dong W, Su Z et al (2016) Functional roles of sialylation in breast cancer progression through miR-26a/26b targeting ST8SIA4. Cell Death Dis 7(12):e2561. https://doi.org/10.1038/cddis.2016.427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Puente XS, Sanchez LM, Overall CM et al (2003) Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4(7):544–558. https://doi.org/10.1038/nrg1111

    Article  CAS  PubMed  Google Scholar 

  6. Fortelny N, Cox JH, Kappelhoff R et al (2014) Network analyses reveal pervasive functional regulation between proteases in the human protease web. PLoS Biol 12(5):e1001869. https://doi.org/10.1371/journal.pbio.1001869

    Article  PubMed  PubMed Central  Google Scholar 

  7. Overall CM, Blobel CP (2007) In search of partners: linking extracellular proteases to substrates. Nat Rev Mol Cell Biol 8(3):245–257. https://doi.org/10.1038/nrm2120

    Article  CAS  PubMed  Google Scholar 

  8. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207. https://doi.org/10.1038/nature01511

    Article  CAS  PubMed  Google Scholar 

  9. Hebert AS, Richards AL, Bailey DJ et al (2014) The one hour yeast proteome. Mol Cell Proteomics 13(1):339–347. https://doi.org/10.1074/mcp.M113.034769

    Article  CAS  PubMed  Google Scholar 

  10. Steen H, Mann M (2004) The ABC's (and XYZ's) of peptide sequencing. Nat Rev Mol Cell Biol 5(9):699–711. https://doi.org/10.1038/nrm1468

    Article  CAS  PubMed  Google Scholar 

  11. Solis N, Overall CM (2016) Mass spectrometry-based methodologies for studying proteolytic networks and the degradome. In: Bradshaw RA, Stahl PD (eds) Encyclopedia of cell biology, vol 1. Elsevier, Waltham MA, pp 568–581

    Chapter  Google Scholar 

  12. Kleifeld O, Doucet A, auf dem Keller U et al (2010) Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nat Biotechnol 28(3):281–288. https://doi.org/10.1038/nbt.1611

    Article  CAS  PubMed  Google Scholar 

  13. Kleifeld O, Doucet A, Prudova A et al (2011) Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat Protoc 6(10):1578–1611. https://doi.org/10.1038/nprot.2011.382

    Article  CAS  PubMed  Google Scholar 

  14. Schilling O, Barre O, Huesgen PF et al (2010) Proteome-wide analysis of protein carboxy termini: C terminomics. Nat Methods 7(7):508–511. https://doi.org/10.1038/nmeth.1467

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, He Q, Ye J et al (2015) Systematic optimization of C-terminal amine-based isotope labeling of substrates approach for deep screening of C-Terminome. Anal Chem 87(20):10354–10361. https://doi.org/10.1021/acs.analchem.5b02451

    Article  CAS  PubMed  Google Scholar 

  16. Somasundaram P, Koudelka T, Linke D et al (2016) C-terminal charge-reversal Derivatization and parallel use of multiple proteases facilitates identification of protein C-termini by C-Terminomics. J Proteome Res 15(4):1369–1378. https://doi.org/10.1021/acs.jproteome.6b00146

    Article  CAS  PubMed  Google Scholar 

  17. Huesgen PF, Lange PF, Rogers LD et al (2015) LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification. Nat Methods 12(1):55–58. https://doi.org/10.1038/nmeth.3177

    Article  CAS  PubMed  Google Scholar 

  18. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. https://doi.org/10.1038/nbt.1511

    Article  CAS  PubMed  Google Scholar 

  19. Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138(1):141–143

    Article  CAS  PubMed  Google Scholar 

  20. Geiger T, Cox J, Ostasiewicz P et al (2010) Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 7(5):383–385. https://doi.org/10.1038/nmeth.1446

    Article  CAS  PubMed  Google Scholar 

  21. Good DM, Wirtala M, McAlister GC et al (2007) Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics 6(11):1942–1951. https://doi.org/10.1074/mcp.M700073-MCP200

    Article  CAS  PubMed  Google Scholar 

  22. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11(12):2301–2319. https://doi.org/10.1038/nprot.2016.136

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

N.S. is funded by the Michael Smith Foundation for Health Research of Canada (Grant ID:16642) and by the National Health and Medical Research Council of Australia (APP1126842). C.M.O holds a Canada Research Chair in Protease Proteomics and Systems Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Overall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Solis, N., Overall, C.M. (2018). Identification of Protease Cleavage Sites and Substrates in Cancer by Carboxy-TAILS (C-TAILS). In: Cal, S., Obaya, A. (eds) Proteases and Cancer. Methods in Molecular Biology, vol 1731. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7595-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7595-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7594-5

  • Online ISBN: 978-1-4939-7595-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics