Skip to main content

A Combinatorial Approach to Circuit Mapping in the Mouse Olfactory Bulb

  • Protocol
  • First Online:
Extracellular Recording Approaches

Part of the book series: Neuromethods ((NM,volume 134))

  • 1311 Accesses

Abstract

Neurons form neural circuits through functional synapses. Inputs and outputs across these circuits contribute to the brain’s intricate mechanisms of information processing and behavioral responses. By combining acousto-optic deflector-based scanning microscopy with optogenetics, whole cell electrophysiological recordings, and transgenic viral delivery, researchers can now investigate and map relevant neural circuits with high spatial and cell type-specific precision. The goal of this review is to provide the reader with guidelines and methods for using a combinatorial approach toward circuit mapping in rodent brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274(5290):1133

    Article  CAS  PubMed  Google Scholar 

  2. Ko H, Hofer SB, Pichler B, Buchanan KA, Sjöström PJ, Mrsic-Flogel TD (2011) Functional specificity of local synaptic connections in neocortical networks. Nature 473(7345):87–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lüscher C, Jan LY, Stoffel M, Malenka RC, Nicoll RA (1997) G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19(3):687–695

    Article  PubMed  Google Scholar 

  4. Crabtree GW, Gogos JA (2014) Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia. Front Synaptic Neurosci 6:28

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nagayama S, Homma R, Imamura F (2014) Neuronal organization of olfactory bulb circuits. Front Neural Circuits 8:98

    Article  PubMed  PubMed Central  Google Scholar 

  6. Huang L, Garcia I, Jen HI, Arenkiel BR (2013) Reciprocal connectivity between mitral cells and external plexiform layer interneurons in the mouse olfactory bulb. Front Neural Circuits 7:32

    Article  PubMed  PubMed Central  Google Scholar 

  7. Huang L, Ung K, Garcia I, Quast KB, Cordiner K, Saggau P, Arenkiel BR (2016) Task learning promotes plasticity of interneuron connectivity maps in the olfactory bulb. J Neurosci 36(34):8856–8871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Quast KB, Ung K, Froudarakis E, Huang L, Herman I, Addison AP et al (2017) Developmental broadening of inhibitory sensory maps. Nat Neurosci 20(2):189–199

    Article  CAS  PubMed  Google Scholar 

  9. Garcia I, Quast KB, Huang L, Herman AM, Selever J, Deussing JM et al (2014) Local CRH signaling promotes synaptogenesis and circuit integration of adult-born neurons. Dev Cell 30(6):645–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arenkiel BR et al (2011) Activity-induced remodeling of olfactory bulb microcircuits revealed by monosynaptic tracing. PLoS One 6(12):e29423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Imai T (2014) Construction of functional neuronal circuitry in the olfactory bulb. In: Seminars in cell & developmental biology, vol 35. Academic Press, London, pp 180–188

    Google Scholar 

  12. Arenkiel BR, Peca J, Davison IG, Feliciano C, Deisseroth K, Augustine GJ et al (2007) In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54(2):205–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mitsui S, Igarashi KM, Mori K, Yoshihara Y (2011) Genetic visualization of the secondary olfactory pathway in Tbx21 transgenic mice. Neural Syst Circuits 1(1):5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Faedo A, Ficara F, Ghiani M, Aiuti A, Rubenstein JL, Bulfone A (2002) Developmental expression of the T-box transcription factor T-bet/Tbx21 during mouse embryogenesis. Mech Dev 116(1):157–160

    Article  CAS  PubMed  Google Scholar 

  15. Kosaka T, Kosaka K (2008) Tyrosine hydroxylase-positive GABAergic juxtaglomerular neurons are the main source of the interglomerular connections in the mouse main olfactory bulb. Neurosci Res 60(3):349–354

    Article  CAS  PubMed  Google Scholar 

  16. Parrish-Aungst S, Shipley MT, Erdelyi F, Szabo G, Puche AC (2007) Quantitative analysis of neuronal diversity in the mouse olfactory bulb. J Comp Neurol 501(6):825–836

    Article  CAS  PubMed  Google Scholar 

  17. Miyamichi K, Shlomai-Fuchs Y, Shu M, Weissbourd BC, Luo L, Mizrahi A (2013) Dissecting local circuits: parvalbumin interneurons underlie broad feedback control of olfactory bulb output. Neuron 80(5):1232–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nagai Y, Sano H, Yokoi M (2005) Transgenic expression of cre recombinase in mitral/tufted cells of the olfactorybulb, genesis,43.1

    Google Scholar 

  19. Wang H, Peca J, Matsuzaki M, Matsuzaki K, Noguchi J, Qiu L et al (2007) High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc Natl Acad Sci 104(19):8143–8148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alvarez-Buylla A, Garcıa-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22(3):629–634

    CAS  PubMed  Google Scholar 

  21. Herman AM, Ortiz-Guzman J, Kochukov M, Herman I, Quast KB, Patel JM et al (2016) A cholinergic basal forebrain feeding circuit modulates appetite suppression. Nature 538(7624):253–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Atasoy D, Aponte Y, Su HH, Sternson SM (2008) A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci 28(28):7025–7030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Perez-Costas E, Melendez-Ferro M, Roberts RC (2007) Microscopy techniques and the study of synapses. Modern Res Educat Topics Microsc 1:164–170

    Google Scholar 

  24. Guzowski JF, Timlin JA, Roysam B, McNaughton BL, Worley PF, Barnes CA (2005) Mapping behaviorally relevant neural circuits with immediate-early gene expression. Curr Opin Neurobiol 15(5):599–606

    Article  CAS  PubMed  Google Scholar 

  25. Sheng M, Greenberg ME (1990) The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4(4):477–485

    Article  CAS  PubMed  Google Scholar 

  26. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci 100(24):13940–13945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baker CA, Elyada YM, Parra A, Bolton MM (2016) Cellular resolution circuit mapping with temporal-focused excitation of soma-targeted channelrhodopsin. elife 5:e14193

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kravitz AV, Kreitzer AC (2011) Optogenetic manipulation of neural circuitry in vivo. Curr Opin Neurobiol 21(3):433–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang K, Liu Y, Li Y, Guo Y, Song P, Zhang X et al (2011) Precise spatiotemporal control of optogenetic activation using an acousto-optic device. PLoS One 6(12):e28468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Holehonnur R, Luong JA, Chaturvedi D, Ho A, Lella SK, Hosek MP, Ploski JE (2014) Adeno-associated viral serotypes produce differing titers and differentially transduce neurons within the rat basal and lateral amygdala. BMC Neurosci 15(1):28

    Article  PubMed  PubMed Central  Google Scholar 

  31. Osten P, Grinevich V, Cetin A (2007) Viral vectors: a wide range of choices and high levels of service. In: Conditional mutagenesis: an approach to disease models. Springer, Berlin, Heidelberg, pp 177–202

    Chapter  Google Scholar 

  32. Soudais C, Laplace-Builhe C, Kissa K, Kremer EJ (2001) Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo. FASEB J 15(12):2283–2285

    CAS  PubMed  Google Scholar 

  33. Bru T, Salinas S, Kremer EJ (2010) An update on canine adenovirus type 2 and its vectors. Virus 2(9):2134–2153

    Article  CAS  Google Scholar 

  34. Arenkiel BR, Ehlers MD (2009) Molecular genetics and imaging technologies for circuit-based neuroanatomy. Nature 461(7266):900–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Denk W, Delaney KR, Gelperin A, Kleinfeld D, Strowbridge BW, Tank DW, Yuste R (1994) Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. J Neurosci Methods 54(2):151–162

    Article  CAS  PubMed  Google Scholar 

  36. Matsuzaki M, Ellis-Davies GC, Kasai H (2008) Three-dimensional mapping of unitary synaptic connections by two-photon macro photolysis of caged glutamate. J Neurophysiol 99(3):1535–1544

    Article  CAS  PubMed  Google Scholar 

  37. Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K et al (2010) Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat Protoc 5(2):247–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saraiva LR, Ibarra-Soria X, Khan M, Omura M, Scialdone A, Mombaerts P et al (2015) Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq. Sci Rep 5:18178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by funding from the McNair Medical Institute and NINDS grant R01NS078294.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin R. Arenkiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, G. et al. (2018). A Combinatorial Approach to Circuit Mapping in the Mouse Olfactory Bulb. In: Sillitoe, R. (eds) Extracellular Recording Approaches. Neuromethods, vol 134. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7549-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7549-5_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7548-8

  • Online ISBN: 978-1-4939-7549-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics