Skip to main content

High-Frequency Lithium Acetate Transformation of Schizosaccharomyces pombe

  • Protocol
  • First Online:
Schizosaccharomyces pombe

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1721))

Abstract

The introduction of ectopic DNA, such as plasmids, into yeast cells has for decades been a critical protocol for the study of this eukaryotic model system. We describe here an efficient transformation procedure for use in the fission yeast Schizosaccharomyces pombe. This method relies on chemical agents (lithium acetate, and polyethylene glycol) and temperature stresses, which ultimately facilitate transfer of the genetic material through the cell wall and plasma membrane without significant impact on the transferred DNA or the recipient cell. Using this protocol, we consistently see transformation efficiencies between 1.0 × 103 and 1.0 × 104 transformants per microgram of the plasmid with 108 S. pombe cells. The principal benefits and advantages of this method are its simplicity, efficiency, and relative speed of completion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Griffith F (1928) The significance of pneumococcal types. J Hyg (Lond) 27(2):113–159

    Article  CAS  Google Scholar 

  2. Downie AW (1972) Pneumococcal transformation—a backward view. Fourth Griffith memorial lecture. J Gen Microbiol 73(1):1–11. https://doi.org/10.1099/00221287-73-1-1

    Article  CAS  PubMed  Google Scholar 

  3. Cohen SN, Chang AC, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A 69(8):2110–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166(4):557–580

    Article  CAS  PubMed  Google Scholar 

  5. Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16(13):6127–6145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wirth R, Friesenegger A, Fiedler S (1989) Transformation of various species of gram-negative bacteria belonging to 11 different genera by electroporation. Mol Gen Genet 216(1):175–177

    Article  CAS  PubMed  Google Scholar 

  7. Miller JF, Dower WJ, Tompkins LS (1988) High-voltage electroporation of bacteria: genetic transformation of Campylobacter jejuni with plasmid DNA. Proc Natl Acad Sci U S A 85(3):856–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci U S A 75(4):1929–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beach D, Nurse P (1981) High-frequency transformation of the fission yeast Schizosaccharomyces pombe. Nature 290(5802):140–142

    Article  CAS  PubMed  Google Scholar 

  10. Levin HL (1995) A novel mechanism of self-primed reverse transcription defines a new family of retroelements. Mol Cell Biol 15(6):3310–3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heyer W, Sipiczki M, Kohli J (1986) Replicating plasmids in Schizosaccharomyces pombe: improvement of symmetric segregation by a new genetic element. Mol Cell Biol 6:80–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Losson R, Lacroute F (1983) Plasmids carrying the yeast OMP decarboxylase structural and regulatory genes: transcription regulation in a foreign environment. Cell 32:371–377

    Article  CAS  PubMed  Google Scholar 

  13. Sangesland M, Atwood-Moore A, Rai SK, Levin HL (2016) Qualitative and quantitative assays of transposition and homologous recombination of the retrotransposon Tf1 in Schizosaccharomyces pombe. Methods Mol Biol 1400:117–130. https://doi.org/10.1007/978-1-4939-3372-3_8

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry L. Levin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rai, S.K., Atwood-Moore, A., Levin, H.L. (2018). High-Frequency Lithium Acetate Transformation of Schizosaccharomyces pombe . In: Singleton, T. (eds) Schizosaccharomyces pombe. Methods in Molecular Biology, vol 1721. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7546-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7546-4_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7545-7

  • Online ISBN: 978-1-4939-7546-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics