Skip to main content

PAR-CLIP for Discovering Target Sites of RNA-Binding Proteins

  • Protocol
  • First Online:
mRNA Decay

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1720))

Abstract

RNA-binding proteins (RBPs) establish posttranscriptional gene regulation (PTGR) by coordinating the maturation, editing, transport, stability, and translation of cellular RNAs. A variety of experimental approaches have been developed to characterize the RNAs associated with RBPs in vitro as well as in vivo. Our laboratory developed Photoactivatable-Ribonucleoside-Enhanced Cross-Linking and Immunoprecipitation (PAR-CLIP), which in combination with next-generation sequencing enables the identification of RNA targets of RBPs at a nucleotide-level resolution. Here we present an updated and condensed step-by-step PAR-CLIP protocol followed by the description of our RNA-seq data analysis pipeline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the spatial dimension. Cell 136:719–730. https://doi.org/10.1016/j.cell.2009.01.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moore MJ, Proudfoot NJ (2009) Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136:688–700. https://doi.org/10.1016/j.cell.2009.02.001

    Article  CAS  PubMed  Google Scholar 

  3. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745. https://doi.org/10.1016/j.cell.2009.01.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gerstberger S, Hafner M, Tuschl T (2014) A census of human RNA-binding proteins. Nat Rev Genet 15:829–845. https://doi.org/10.1038/nrg3813

    Article  CAS  PubMed  Google Scholar 

  5. Greenberg JR (1979) Ultraviolet light-induced crosslinking of mRNA to proteins. Nucleic Acids Res 6:715–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wagenmakers AJ, Reinders RJ, van Venrooij WJ (1980) Cross-linking of mRNA to proteins by irradiation of intact cells with ultraviolet light. Eur J Biochem 112:323–330

    Article  CAS  PubMed  Google Scholar 

  7. Mayrand S, Setyono B, Greenberg JR, Pederson T (1981) Structure of nuclear ribonucleoprotein: identification of proteins in contact with poly(A)+ heterogeneous nuclear RNA in living HeLa cells. J Cell Biol 90:380–384

    Article  CAS  PubMed  Google Scholar 

  8. Dreyfuss G, Choi YD, Adam SA (1984) Characterization of heterogeneous nuclear RNA-protein complexes in vivo with monoclonal antibodies. Mol Cell Biol 4:1104–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Konig J, Zarnack K, Luscombe NM, Ule J (2011) Protein-RNA interactions: new genomic technologies and perspectives. Nat Rev Genet 13:77–83. https://doi.org/10.1038/nrg3141

    Article  Google Scholar 

  10. Gerstberger S, Hafner M, Tuschl T (2013) Learning the language of post-transcriptional gene regulation. Genome Biol 14:130. https://doi.org/10.1186/gb-2013-14-8-130

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7:952–958. https://doi.org/10.1038/nrm2067

    Article  CAS  PubMed  Google Scholar 

  12. Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141. https://doi.org/10.1016/j.cell.2010.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ascano M, Mukherjee N, Bandaru P et al (2012) FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 492:382–386. https://doi.org/10.1038/nature11737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Flores O, Nakayama S, Whisnant AW et al (2013) Mutational inactivation of herpes simplex virus 1 microRNAs identifies viral mRNA targets and reveals phenotypic effects in culture. J Virol 87:6589–6603. https://doi.org/10.1128/JVI.00504-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wagschal A, Najafi-Shoushtari SH, Wang L et al (2015) Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nat Med 21:1290–1297. https://doi.org/10.1038/nm.3980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Llobet-Navas D, Rodríguez-Barrueco R, La Iglesia-Vicente de J et al (2014) The microRNA 424/503 cluster reduces CDC25A expression during cell cycle arrest imposed by transforming growth factor β in mammary epithelial cells. Mol Cell Biol 34:4216–4231. https://doi.org/10.1128/MCB.00611-14

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hansen HT, Rasmussen SH, Adolph SK et al (2015) Drosophila Imp iCLIP identifies an RNA assemblage coordinating F-actin formation. Genome Biol 16:123. https://doi.org/10.1186/s13059-015-0687-0

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xiong X-P, Vogler G, Kurthkoti K et al (2015) SmD1 modulates the miRNA pathway independently of its pre-mRNA splicing function. PLoS Genet 11:e1005475. https://doi.org/10.1371/journal.pgen.1005475

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lebedeva S, Jens M, Theil K et al (2011) Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell 43:340–352. https://doi.org/10.1016/j.molcel.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  20. Jungkamp A-C, Stoeckius M, Mecenas D et al (2011) In vivo and transcriptome-wide identification of RNA binding protein target sites. Mol Cell 44:828–840. https://doi.org/10.1016/j.molcel.2011.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Creamer TJ, Darby MM, Jamonnak N et al (2011) Transcriptome-wide binding sites for components of the Saccharomyces cerevisiae non-poly(A) termination pathway: Nrd1, Nab3, and Sen1. PLoS Genet 7:e1002329. https://doi.org/10.1371/journal.pgen.1002329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baejen C, Torkler P, Gressel S et al (2014) Transcriptome maps of mRNP biogenesis factors define pre-mRNA recognition. Mol Cell 55:745–757. https://doi.org/10.1016/j.molcel.2014.08.005

    Article  CAS  PubMed  Google Scholar 

  23. Garzia A, Meyer C, Morozov P et al (2016) Optimization of PAR-CLIP for transcriptome-wide identification of binding sites of RNA-binding proteins. Methods 118–119:24–40. https://doi.org/10.1016/j.ymeth.2016.10.007

    PubMed  Google Scholar 

  24. Corcoran DL, Georgiev S, Mukherjee N et al (2011) PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol 12:R79. https://doi.org/10.1186/gb-2011-12-8-r79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Khorshid M, Rodak C, Zavolan M (2011) CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins. Nucleic Acids Res 39:D245–D252. https://doi.org/10.1093/nar/gkq940

    Article  CAS  PubMed  Google Scholar 

  26. Yang J-H, Li J-H, Shao P et al (2011) starBase: a database for exploring microRNA-mRNA interaction maps from argonaute CLIP-Seq and degradome-Seq data. Nucleic Acids Res 39:D202–D209. https://doi.org/10.1093/nar/gkq1056

    Article  CAS  PubMed  Google Scholar 

  27. Sievers C, Schlumpf T, Sawarkar R et al (2012) Mixture models and wavelet transforms reveal high confidence RNA-protein interaction sites in MOV10 PAR-CLIP data. Nucleic Acids Res 40:e160–e160. https://doi.org/10.1093/nar/gks697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Anders G, Mackowiak SD, Jens M et al (2012) doRiNA: a database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res 40:D180–D186. https://doi.org/10.1093/nar/gkr1007

    Article  CAS  PubMed  Google Scholar 

  29. Uren PJ, Bahrami-Samani E, Burns SC et al (2012) Site identification in high-throughput RNA-protein interaction data. Bioinformatics 28:3013–3020. https://doi.org/10.1093/bioinformatics/bts569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chou C-H, Lin F-M, Chou M-T et al (2013) A computational approach for identifying microRNA-target interactions using high-throughput CLIP and PAR-CLIP sequencing. BMC Genomics 14(Suppl 1):S2. https://doi.org/10.1186/1471-2164-14-S1-S2

    PubMed  PubMed Central  Google Scholar 

  31. Chen B, Yun J, Kim MS et al (2014) PIPE-CLIP: a comprehensive online tool for CLIP-seq data analysis. Genome Biol 15:R18. https://doi.org/10.1186/gb-2014-15-1-r18

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang T, Xie Y, Xiao G (2014) dCLIP: a computational approach for comparative CLIP-seq analyses. Genome Biol 15:R11. https://doi.org/10.1186/gb-2014-15-1-r11

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kloetgen A, Borkhardt A, Hoell JI, McHardy AC (2016) The PARA-suite: PAR-CLIP specific sequence read simulation and processing. Peer J 4:e2619–e2622. https://doi.org/10.7717/peerj.2619

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hoell JI, Larsson E, Larsson E et al (2011) RNA targets of wild-type and mutant FET family proteins. Nat Publ Group 18:1428–1431. https://doi.org/10.1038/nsmb.2163

    CAS  Google Scholar 

  35. Spitzer J, Hafner M, Landthaler M et al (2014) PAR-CLIP (photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation): a step-by-step protocol to the transcriptome-wide identification of binding sites of RNA-binding proteins. Meth Enzymol 539:113–161. https://doi.org/10.1016/B978-0-12-420120-0.00008-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kishore S, Jaskiewicz L, Burger L et al (2011) A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat Meth 8:559–564. https://doi.org/10.1038/nmeth.1608

    Article  CAS  Google Scholar 

  37. Yokoshi M, Li Q, Yamamoto M et al (2014) Direct binding of ataxin-2 to distinct elements in 3' UTRs promotes mRNA stability and protein expression. Mol Cell 55:186–198. https://doi.org/10.1016/j.molcel.2014.05.022

    Article  CAS  PubMed  Google Scholar 

  38. Baltz AG, Munschauer M, Schwanhäusser B et al (2012) The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell 46:674–690. https://doi.org/10.1016/j.molcel.2012.05.021

    Article  CAS  PubMed  Google Scholar 

  39. Martin G, Gruber AR, Keller W, Zavolan M (2012) Genome-wide analysis of pre-mRNA 3″ end processing reveals a decisive role of human cleavage factor I in the regulation of 3″ UTR length. Cell Rep 1:753–763. https://doi.org/10.1016/j.celrep.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  40. Mandal PK, Ewing AD, Hancks DC, Kazazian HH (2013) Enrichment of processed pseudogene transcripts in L1-ribonucleoprotein particles. Hum Mol Genet 22:3730–3748. https://doi.org/10.1093/hmg/ddt225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kishore S, Gruber AR, Jedlinski DJ et al (2013) Insights into snoRNA biogenesis and processing from PAR-CLIP of snoRNA core proteins and small RNA sequencing. Genome Biol 14:R45. https://doi.org/10.1186/gb-2013-14-5-r45

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gregersen LH, Schueler M, Munschauer M et al (2014) MOV10 Is a 5′ to 3′ RNA helicase contributing to UPF1 mRNA target degradation by translocation along 3′ UTRs. Mol Cell 54:573–585. https://doi.org/10.1016/j.molcel.2014.03.017

    Article  CAS  PubMed  Google Scholar 

  43. Farazi TA, Leonhardt CS, Mukherjee N et al (2014) Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets. RNA 20:1090–1102. https://doi.org/10.1261/rna.045005.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Murakawa Y, Hinz M, Mothes J et al (2015) RC3H1 post-transcriptionally regulates A20 mRNA and modulates the activity of the IKK/NF-κB pathway. Nat Commun 6:7367. https://doi.org/10.1038/ncomms8367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Tuschl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Garzia, A., Morozov, P., Sajek, M., Meyer, C., Tuschl, T. (2018). PAR-CLIP for Discovering Target Sites of RNA-Binding Proteins. In: Lamandé, S. (eds) mRNA Decay. Methods in Molecular Biology, vol 1720. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7540-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7540-2_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7539-6

  • Online ISBN: 978-1-4939-7540-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics