Skip to main content

RNA Sequencing and Analysis in Microorganisms for Metabolic Network Reconstruction

  • Protocol
  • First Online:
Metabolic Network Reconstruction and Modeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1716))

Abstract

There is a strict interplay between metabolic networks and transcriptional regulation in bacteria; indeed, the transcriptome regulation, affecting the expression of large gene sets, can be used to predict the likely “on” or “off” state of metabolic genes as a function of environmental factors. Up to date, many bacterial transcriptomes have been studied by RNAseq, hundreds of experiments have been performed, and Giga bases of sequences have been produced. All this transcriptional information could potentially be integrated into metabolic networks in order to obtain a more comprehensive view of their regulation and to increase their prediction power.

To get high-quality transcriptomic data, to be integrated into metabolic networks, it is paramount to clearly know how to produce highly informative RNA sequencing libraries and how to manage RNA sequencing data.

In this chapter, we will get across the main steps of an RNAseq experiment: from removal of ribosomal RNAs, to strand-specific library preparation, till data analysis and integration. We will try to share our experience and know-how, to give you a precise protocol to follow, and some useful recommendations or tips and tricks to adopt in order to go straightforward toward a successful RNAseq experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Croucher NJ, Thomson NR (2010) Studying bacterial transcriptomes using RNA-seq. Curr Opin Microbiol 13:619–624. https://doi.org/10.1016/j.mib.2010.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Conway T, Creecy JP, Maddox SM et al (2014) Unprecedented high-resolution view of bacterial operon architecture revealed by RNA sequencing. MBio 5(4):e01442–e01414. https://doi.org/10.1128/mBio.01442-14

    Article  PubMed  PubMed Central  Google Scholar 

  3. Creecy JP, Conway T (2015) Quantitative bacterial transcriptomics with RNA-seq. Curr Opin Microbiol 23:133–140. https://doi.org/10.1016/j.mib.2014.11.011

    Article  CAS  PubMed  Google Scholar 

  4. Arraiano CM, Andrade JM, Domingues S et al (2010) The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol Rev 34:883–923

    Article  CAS  PubMed  Google Scholar 

  5. Passalacqua KD, Varadarajan A, Ondov BD et al (2009) Structure and complexity of a bacterial transcriptome. J Bacteriol 191:3203–3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Perkins TT, Kingsley RA, Fookes MC et al (2009) A strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi. PLoS Genet 5:e1000569

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yoder-Himes DR, Chain PS, Zhu Y et al (2009) Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing. Proc Natl Acad Sci U S A 106:3976–3981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Passalacqua KD, Varadarajan A, Byrd B, Bergman NH (2009) Comparative transcriptional profiling of Bacillus cereus sensu lato strains during growth in CO2-bicarbonate and aerobic atmospheres. PLoS One 4:e4904

    Article  PubMed  PubMed Central  Google Scholar 

  9. Filiatrault MJ, Stodghill PV, Bronstein PA et al (2010) Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity. J Bacteriol 192:2359–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gilbert JA, Field D, Huang Y et al (2008) Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS One 3:e3042

    Article  PubMed  PubMed Central  Google Scholar 

  11. Poretsky RS, Hewson I, Sun S et al (2009) Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre. Environ Microbiol 11:1358–1375

    Article  CAS  PubMed  Google Scholar 

  12. Dodd D, Moon YH, Swaminathan K et al (2010) Transcriptomic analyses of xylan degradation by Prevotella bryantii and insights into energy acquisition by xylanolytic bacteroidetes. J Biol Chem 285:30261–30273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Giannoukos G, Ciulla DM, Huang K et al (2012) Efficient and robust RNA-seq process for cultured bacteria and complex community transcriptomes. Genome Biol 13:r23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sigurgeirsson B, Emanuelsson O, Lundeberg J (2014) Analysis of stranded information using an automated procedure for strand specific RNA sequencing. BMC Genomics 15:631. https://doi.org/10.1186/1471-2164-15-631

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sultan M, Amstislavskiy V, Risch T et al (2014) Influence of RNA extraction methods and library selection schemes on RNA-seq data. BMC Genomics 15:675. https://doi.org/10.1186/1471-2164-15-675

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sharma CM, Hoffmann S, Darfeuille F et al (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–255

    Article  CAS  PubMed  Google Scholar 

  17. Jager D, Sharma CM, Thomsen J et al (2009) Deep sequencing analysis of the Methanosarcina mazei Go1 transcriptome in response to nitrogen availability. Proc Natl Acad Sci U S A 106:21878–21882

    Article  PubMed  PubMed Central  Google Scholar 

  18. Irnov I, Sharma CM, Vogel J, Winkler WC (2010) Identification of regulatory RNAs in Bacillus subtilis. Nucleic Acids Res 38:6637–6651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bischler T, Tan HS, Nieselt K, Sharma CM (2015) Differential RNA-seq (dRNA-seq) for annotation of transcriptional start sites and small RNAs in Helicobacter pylori. Methods 86:89–101. https://doi.org/10.1016/j.ymeth.2015.06.012

    Article  CAS  PubMed  Google Scholar 

  20. Thomason MK, Bischler T, Eisenbart SK et al (2015) Global transcriptional start site mapping using differential RNA sequencing reveals novel antisense RNAs in Escherichia coli. J Bacteriol 197:18–28. https://doi.org/10.1128/JB.02096-14

    Article  PubMed  Google Scholar 

  21. Sharma CM, Vogel J (2014) Differential RNA-seq: the approach behind and the biological insight gained. Curr Opin Microbiol 19:97–105. https://doi.org/10.1016/j.mib.2014.06.010

    Article  CAS  PubMed  Google Scholar 

  22. Wurtzel O, Sapra R, Chen F et al (2010) A single-base resolution map of an archaeal transcriptome. Genome Res 20:133–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vivancos AP, Guell M, Dohm JC et al (2010) Strand-specific deep sequencing of the transcriptome. Genome Res 20:989–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yi H, Cho YJ, Won S et al (2011) Duplex-specific nuclease efficiently removes rRNA for prokaryotic RNA-seq. Nucleic Acids Res 39(20):e140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peano C, Pietrelli A, Consolandi C et al (2013) An efficient rRNA removal method for RNA sequencing in GC-rich bacteria. Microb Inform Exp 3(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rossi E, Longo F, Barbagallo M, Peano C, Consolandi C, Pietrelli A, Jaillon S, Garlanda CLP, Landini P (2016) Glucose availability enhances lipopolysaccharide production and immunogenicity in the opportunistic pathogen Acinetobacter baumannii. Future Microbiol 11(3):335–349. https://doi.org/10.2217/fmb.15.153

    Article  CAS  PubMed  Google Scholar 

  27. Tocchetti A, Bordoni R, Gallo G et al (2015) A genomic, transcriptomic and proteomic look at the GE2270 producer Planobispora rosea, an uncommon actinomycete. PLoS One 10(7):e0133705. https://doi.org/10.1371/journal.pone.0133705

    Article  PubMed  PubMed Central  Google Scholar 

  28. Peano C, Chiaramonte F, Motta S et al (2014) Gene and protein expression in response to different growth temperatures and oxygen availability in Burkholderia thailandensis. PLoS ONE 9(3): e93009. https://doi.org/10.1371/journal.pone.0093009

  29. Hrdlickova R, Toloue M, Tian B (2016) RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA 8(1). https://doi.org/10.1002/wrna.1364

  30. Parkhomchuk D, Borodina T, Amstislavskiy V et al (2009) Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 37(18):e123. https://doi.org/10.1093/nar/gkp596

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhong S, Joung JG, Zheng Y et al (2011) High-throughput illumina strand-specific RNA sequencing library preparation. Cold Spring Harb Protoc 6:940–949. https://doi.org/10.1101/pdb.prot5652

    Google Scholar 

  32. Weissenmayer BA, Prendergast JGD, Lohan AJ, Loftus BJ (2011) Sequencing illustrates the transcriptional response of Legionella pneumophila during infection and identifies seventy novel small non-coding RNAs. PLoS One 6(3):e17570. https://doi.org/10.1371/journal.pone.0017570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Borodina T, Adjaye J, Sultan M (2011) A strand-specific library preparation protocol for RNA sequencing. Methods Enzymol 500:79–98. https://doi.org/10.1016/B978-0-12-385118-5.00005-0

    Article  CAS  PubMed  Google Scholar 

  34. Hafner M, Landgraf P, Ludwig J et al (2008) Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 44:3–12. https://doi.org/10.1016/j.ymeth.2007.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jayaprakash AD, Jabado O, Brown BD, Sachidanandam R (2011) Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res 39(21):e141. https://doi.org/10.1093/nar/gkr693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Levin JZ, Yassour M, Adiconis X et al (2010) Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods 7:709–715. https://doi.org/10.1038/nmeth.1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Langevin SA, Bent ZW, Solberg OD et al (2013) Peregrine: a rapid and unbiased method to produce strand-specific RNA-Seq libraries from small quantities of starting material. RNA Biol 10:502–515. https://doi.org/10.4161/rna.24284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Townsley BT, Covington MF, Ichihashi Y et al (2015) BrAD-seq: breath adapter directional sequencing: a streamlined, ultra-simple and fast library preparation protocol for strand specific mRNA library construction. Front Plant Sci 6:366. https://doi.org/10.3389/fpls.2015.00366

    Article  PubMed  PubMed Central  Google Scholar 

  39. Miller DFB, Yan PS, Buechlein A et al (2013) A new method for stranded whole transcriptome RNA-seq. Methods 63:126–134. https://doi.org/10.1016/j.ymeth.2013.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miller DFB, Yan PX, Fang F et al (2015) Stranded whole transcriptome RNA-Seq for all RNA types. Curr Protoc Hum Genet 84:11.14.1–11.14.23. https://doi.org/10.1002/0471142905.hg1114s84

    Article  Google Scholar 

  41. Pease J, Sooknanan R (2012) A rapid, directional RNA-seq library preparation workflow for Illumina[reg] sequencing. Nat Methods 9:i–ii. https://doi.org/10.1038/nmeth.f.355

    Google Scholar 

  42. Conesa A, Madrigal P, Tarazona S et al (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13. https://doi.org/10.1186/s13059-016-0881-8

    Article  PubMed  PubMed Central  Google Scholar 

  43. Haas BJ, Chin M, Nusbaum C et al (2012) How deep is deep enough for RNA-Seq profiling of bacterial transcriptomes? BMC Genomics 13:734. https://doi.org/10.1186/1471-2164-13-734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McClure R, Balasubramanian D, Sun Y et al (2013) Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res 41:e140. https://doi.org/10.1093/nar/gkt444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512. https://doi.org/10.1038/nprot.2013.084

    Article  CAS  PubMed  Google Scholar 

  46. Luo R, Liu B, Xie Y et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18. https://doi.org/10.1186/2047-217X-1-18

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tjaden B (2015) De novo assembly of bacterial transcriptomes from RNA-seq data. Genome Biol 16(1). https://doi.org/10.1186/s13059-014-0572-2

  48. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rumble SM, Lacroute P, Dalca AV et al (2009) SHRiMP: accurate mapping of short color-space reads. PLoS Comput Biol 5:e1000386. https://doi.org/10.1371/journal.pcbi.1000386

    Article  PubMed  PubMed Central  Google Scholar 

  50. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hoffmann S, Otto C, Kurtz S et al (2009) Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput Biol 5:e1000502. https://doi.org/10.1371/journal.pcbi.1000502

    Article  PubMed  PubMed Central  Google Scholar 

  52. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Anders S, Pyl PT, Huber W (2015) HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169. https://doi.org/10.1093/bioinformatics/btu638

    Article  CAS  PubMed  Google Scholar 

  54. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  PubMed  PubMed Central  Google Scholar 

  55. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  57. Förstner KU, Vogel J, Sharma CM (2014) READemption-a tool for the computational analysis of deep-sequencing-based transcriptome data. Bioinformatics 30:3421–3423. https://doi.org/10.1093/bioinformatics/btu533

    Article  PubMed  Google Scholar 

  58. Johnson BK, Scholz MB, Teal TK, Abramovitch RB (2016) SPARTA: simple program for automated reference-based bacterial RNA-seq transcriptome analysis. BMC Bioinformatics 17:66. https://doi.org/10.1186/s12859-016-0923-y

    Article  PubMed  PubMed Central  Google Scholar 

  59. Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  60. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  PubMed  PubMed Central  Google Scholar 

  62. Aho A V, Kernighan BW, Weinberger PJ (1987) The Awk Programming Language, Editor: Prentice Hall, ISBN-13: 978-0201079814

    Google Scholar 

  63. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief Bioinform 14:178–192. https://doi.org/10.1093/bib/bbs017

    Article  PubMed  Google Scholar 

  64. Team RDC (2012) R: A language and environment for statistical computing. the R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  65. Zur H, Ruppin E, Shlomi T (2010) iMAT: an integrative metabolic analysis tool. Bioinformatics 26:3140–3142. https://doi.org/10.1093/bioinformatics/btq602

    Article  CAS  PubMed  Google Scholar 

  66. Becker SA, Palsson BO (2008) Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 4(5):e1000082. https://doi.org/10.1371/journal.pcbi.1000082

    Article  PubMed  PubMed Central  Google Scholar 

  67. Åkesson M, Förster J, Nielsen J (2004) Integration of gene expression data into genome-scale metabolic models. Metab Eng 6:285–293. https://doi.org/10.1016/j.ymben.2003.12.002

    Article  PubMed  Google Scholar 

  68. Colijn C, Brandes A, Zucker J et al (2009) Interpreting expression data with metabolic flux models: predicting mycobacterium tuberculosis mycolic acid production. PLoS Comput Biol 5(8):e1000489. https://doi.org/10.1371/journal.pcbi.1000489

    Article  PubMed  PubMed Central  Google Scholar 

  69. Collins SB, Reznik E, Segrè D (2012) Temporal expression-based analysis of metabolism. PLoS Comput Biol 8(11):e1002781. https://doi.org/10.1371/journal.pcbi.1002781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Navid A, Almaas E (2012) Genome-level transcription data of Yersinia pestis analyzed with a new metabolic constraint-based approach. BMC Syst Biol 6:150. https://doi.org/10.1186/1752-0509-6-150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chandrasekaran S, Price ND (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci 107:17845–17850. https://doi.org/10.1073/pnas.1005139107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Töpfer N, Jozefczuk S, Nikoloski Z (2012) Integration of time-resolved transcriptomics data with flux-based methods reveals stress-induced metabolic adaptation in Escherichia coli. BMC Syst Biol 6:148. https://doi.org/10.1186/1752-0509-6-148

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jensen PA, Papin JA (2011) Functional integration of a metabolic network model and expression data without arbitrary thresholding. Bioinformatics 27:541–547. https://doi.org/10.1093/bioinformatics/btq702

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clelia Peano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pinatel, E., Peano, C. (2018). RNA Sequencing and Analysis in Microorganisms for Metabolic Network Reconstruction. In: Fondi, M. (eds) Metabolic Network Reconstruction and Modeling. Methods in Molecular Biology, vol 1716. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7528-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7528-0_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7527-3

  • Online ISBN: 978-1-4939-7528-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics