Skip to main content

Optogenetic Retinal Gene Therapy with the Light Gated GPCR Vertebrate Rhodopsin

  • Protocol
  • First Online:
Retinal Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1715))

Abstract

In retinal disease, despite the loss of light sensitivity as photoreceptors die, many retinal interneurons survive in a physiologically and metabolically functional state for long periods. This provides an opportunity for treatment by genetically adding a light sensitive function to these cells. Optogenetic therapies are in development, but, to date, they have suffered from low light sensitivity and narrow dynamic response range of microbial opsins. Expression of light-sensitive G protein coupled receptors (GPCRs), such as vertebrate rhodopsin , can increase sensitivity by signal amplification , as shown by several groups. Here, we describe the methods to (1) express light gated GPCRs in retinal neurons, (2) record light responses in retinal explants in vitro, (3) record cortical light responses in vivo, and (4) test visually guided behavior in treated mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Henriksen BS, Marc RE, Bernstein PS (2014) Optogenetics for retinal disorders. J Ophthalmic Vis Res 9:374–382

    PubMed  PubMed Central  Google Scholar 

  2. Marc R, Pfeiffer R, Jones B (2014) Retinal prosthetics, optogenetics, and chemical photoswitches. ACS Chem Neurosci 5:895–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Busskamp V, Duebel J, Balya D et al (2010) Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329:413–417

    Article  CAS  PubMed  Google Scholar 

  4. Busskamp V, Picaud S, Sahel JA et al (2012) Optogenetic therapy for retinitis pigmentosa. Gene Ther 19:169–175

    Article  CAS  PubMed  Google Scholar 

  5. Nirenberg S, Pandarinath C (2012) Retinal prosthetic strategy with the capacity to restore normal vision. Proc Natl Acad Sci U S A 109:15012–15017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Doroudchi MM, Greenberg KP, Zorzos AN et al (2011) Towards optogenetic sensory replacement. Conf Proc IEEE Eng Med Biol Soc 2011:3139–3141

    PubMed  PubMed Central  Google Scholar 

  7. Doroudchi MM, Greenberg KP, Liu J et al (2011) Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther 19:1220–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thyagarajan S, van Wyk M, Lehmann K et al (2010) Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells. J Neurosci 30:8745–8758

    Article  CAS  PubMed  Google Scholar 

  9. Lagali PS, Balya D, Awatramani GB et al (2008) Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 11:667–675

    Article  CAS  PubMed  Google Scholar 

  10. Bi A, Cui J, Ma YP et al (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50:23–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berger W, Kloeckener-Gruissem B, Neidhardt J (2010) The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res 29:335–375

    Article  CAS  PubMed  Google Scholar 

  12. Shintani K, Shechtman DL, Gurwood AS (2009) Review and update: current treatment trends for patients with retinitis pigmentosa. Optometry 80:384–401

    Article  PubMed  Google Scholar 

  13. Curcio CA, Owsley C, Jackson GR (2000) Spare the rods, save the cones in aging and age-related maculopathy. Invest Ophthalmol Vis Sci 41:2015–2018

    CAS  PubMed  Google Scholar 

  14. Ho AC, Humayun MS, Dorn JD et al (2015) Long-term results from an epiretinal prosthesis to restore sight to the blind. Ophthalmology 122:1547–1554

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mazzoni F, Novelli E, Strettoi E (2008) Retinal ganglion cells survive and maintain normal dendritic morphology in a mouse model of inherited photoreceptor degeneration. J Neurosci 28:14282–14292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Haverkamp S, Michalakis S, Claes E et al (2006) Synaptic plasticity in CNGA3(−/−) mice: cone bipolar cells react on the missing cone input and form ectopic synapses with rods. J Neurosci 26:5248–5255

    Article  CAS  PubMed  Google Scholar 

  17. RetroSense Therapeutics Phase I/II Clinical Trial for RST-001; trial #NCT02556736. www.clinicaltrials.gov.

  18. Grossman N, Nikolic K, Grubb MS et al (2011) High-frequency limit of neural stimulation with ChR2. Conf Proc IEEE Eng Med Biol Soc 2011:4167–4170

    CAS  PubMed  Google Scholar 

  19. Grossman N, Nikolic K, Toumazou C et al (2011) Modeling study of the light stimulation of a neuron cell with channelrhodopsin-2 mutants. IEEE Trans Biomed Eng 58:1742–1751

    Article  PubMed  Google Scholar 

  20. Cehajic-Kapetanovic J, Eleftheriou C, Allen AE et al (2015) Restoration of vision with ectopic expression of human rod opsin. Curr Biol 25:2111–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. http://www.acucela.com/Read-About-Us/Press-Releases/160404_RP

  22. Gaub BM, Berry MH, Holt AE (2015) Optogenetic vision restoration using rhodopsin for enhanced sensitivity. Mol Ther 23:1562–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Westenskow PD, Kurihara T, Bravo S et al (2015) Performing subretinal injections in rodents to deliver retinal pigment epithelium cells in suspension. J Vis Exp 95:52247

    Google Scholar 

  24. Flannery JG, Visel M (2013) Adeno-associated viral vectors for gene therapy of inherited retinal degenerations. Methods Mol Biol 935:351–369

    Article  CAS  PubMed  Google Scholar 

  25. Dalkara D, Byrne LC, Klimczak RR et al (2013) In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 5:189ra176

    Article  Google Scholar 

  26. Petrs-Silva H, Dinculescu A, Li Q et al (2011) Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol Ther 19:293–301

    Article  CAS  PubMed  Google Scholar 

  27. Mutter M, Benkner B, Münch T (2017) Optogenetik als mögliche Therapie bei degenerativen Netzhauterkrankungen. Med Genet 29:239–247

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Flannery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gaub, B.M., Berry, M.H., Visel, M., Holt, A., Isacoff, E.Y., Flannery, J.G. (2018). Optogenetic Retinal Gene Therapy with the Light Gated GPCR Vertebrate Rhodopsin. In: Boon, C., Wijnholds, J. (eds) Retinal Gene Therapy. Methods in Molecular Biology, vol 1715. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7522-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7522-8_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7521-1

  • Online ISBN: 978-1-4939-7522-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics