Skip to main content

Biophysical Techniques to Study B Cell Activation: Single-Molecule Imaging and Force Measurements

  • Protocol
  • First Online:
B Cell Receptor Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1707))

Abstract

Cells of the adaptive immune system recognize pathogenic peptides through specialized receptors on their membranes. The engagement of these receptors with antigen leads to cell activation, which induces profound changes in the cell including cytoskeleton remodeling and membrane deformation. During this process, receptors and signaling molecules undergo spatiotemporal reorganization to form signaling microclusters and the immunological synapse. The cytoskeletal and membrane dynamics also leads to exertion of forces on the cell-substrate interface. In this chapter we describe two techniques—one for single-molecule imaging of B cell receptors to measure their diffusive properties as cells get activated on supported lipid bilayers; and the second for visualizing and quantifying cellular forces using elastic surfaces to stimulate T and B cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonilla FA, Oettgen HC (2010) Adaptive immunity. J Allergy Clin Immunol 125(2 Suppl 2):S33–S40

    Article  PubMed  Google Scholar 

  2. Dustin ML, Groves JT (2012) Receptor signaling clusters in the immune synapse. Annu Rev Biophys 41:543–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Harwood NE, Batista FD (2010) Early events in B cell activation. Annu Rev Immunol 28:185–210

    Article  CAS  PubMed  Google Scholar 

  4. Fleire SJ et al (2006) B cell ligand discrimination through a spreading and contraction response. Science 312(5774):738–741

    Article  CAS  PubMed  Google Scholar 

  5. Song W et al (2013) Actin-mediated feedback loops in B-cell receptor signaling. Immunol Rev 256(1):177–189

    Article  CAS  PubMed  Google Scholar 

  6. Ketchum C, Miller H, Song W, Upadhyaya A (2014) Ligand mobility regulates B cell receptor clustering and signaling activation. Biophys J 106(1):26–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Treanor B, Batista FD (2010) Organisation and dynamics of antigen receptors: implications for lymphocyte signalling. Curr Opin Immunol 22(3):299–307

    Article  CAS  PubMed  Google Scholar 

  8. Treanor B, Depoil D, Bruckbauer A, Batista FD (2011) Dynamic cortical actin remodeling by ERM proteins controls BCR microcluster organization and integrity. J Exp Med 208(5):1055–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Treanor B, Harwood NE, Batista FD (2009) Microsignalosomes: spatially resolved receptor signalling. Biochem Soc Trans 37(Pt 5):1014–1018

    Article  CAS  PubMed  Google Scholar 

  10. Batista FD, Treanor B, Harwood NE (2010) Visualizing a role for the actin cytoskeleton in the regulation of B-cell activation. Immunol Rev 237(1):191–204

    Article  CAS  PubMed  Google Scholar 

  11. Liu C et al (2013) N-wasp is essential for the negative regulation of B cell receptor signaling. PLoS Biol 11(11):e1001704

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu C et al (2011) A balance of Bruton’s tyrosine kinase and SHIP activation regulates B cell receptor cluster formation by controlling actin remodeling. J Immunol 187(1):230–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wan Z et al (2013) B cell activation is regulated by the stiffness properties of the substrate presenting the antigens. J Immunol 190(9):4661–4675

    Article  CAS  PubMed  Google Scholar 

  14. Giannone G et al (2010) Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophys J 99(4):1303–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Betzig E et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  CAS  PubMed  Google Scholar 

  16. Manley S et al (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5(2):155–157

    Article  CAS  PubMed  Google Scholar 

  17. Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317(5845):1749–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Murase K et al (2004) Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys J 86(6):4075–4093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Natkanski E et al (2013) B cells use mechanical energy to discriminate antigen affinities. Science 340(6140):1587–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hui KL, Balagopalan L, Samelson LE, Upadhyaya A (2015) Cytoskeletal forces during signaling activation in Jurkat T-cells. Mol Biol Cell 26(4):685–695

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dembo M, Wang YL (1999) Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 76(4):2307–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Butler JP, Tolic-Norrelykke IM, Fabry B, Fredberg JJ (2002) Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol 282(3):C595–C605

    Article  CAS  Google Scholar 

  25. Gardel ML et al (2008) Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J Cell Biol 183(6):999–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peluso P et al (2003) Optimizing antibody immobilization strategies for the construction of protein microarrays. Anal Biochem 312(2):113–124

    Article  CAS  PubMed  Google Scholar 

  27. Li TP, Song Y, MacGillavry HD, Blanpied TA, Raghavachari S (2016) Protein crowding within the postsynaptic density can impede the escape of membrane proteins. J Neurosci 36(15):4276–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chenouard N et al (2014) Objective comparison of particle tracking methods. Nat Methods 11(3):281–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Han SJ, Oak Y, Groisman A, Danuser G (2015) Traction microscopy to identify force modulation in subresolution adhesions. Nat Methods 12(7):653–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Del Alamo JC et al (2007) Spatio-temporal analysis of eukaryotic cell motility by improved force cytometry. Proc Natl Acad Sci U S A 104(33):13343–13348

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sohn HW, Tolar P, Pierce SK (2008) Membrane heterogeneities in the formation of B cell receptor–Lyn kinase microclusters and the immune synapse. J Cell Biol 182:367 LP-379

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Thomas Blanpied and Dr. Peter Luo (University of Maryland, School of Medicine) for their help and guidance in establishing the experimental protocol, single-molecule localization, and tracking. We thank Dr. King Lam Hui for optimizing the protocol for making the 2-layer gel used for traction force microscopy. This work was supported by the grants NIH AI122205 and NSF 1563355 to AU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpita Upadhyaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rey, I., Garcia, D.A., Wheatley, B.A., Song, W., Upadhyaya, A. (2018). Biophysical Techniques to Study B Cell Activation: Single-Molecule Imaging and Force Measurements. In: Liu, C. (eds) B Cell Receptor Signaling. Methods in Molecular Biology, vol 1707. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7474-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7474-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7473-3

  • Online ISBN: 978-1-4939-7474-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics