Skip to main content

Cell-Based High Content Analysis of Cell Proliferation and Apoptosis

  • Protocol
  • First Online:
High Content Screening

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1683))

Abstract

High content imaging-based cell cycle analysis allows multiplexing of various parameters including DNA content, DNA synthesis, cell proliferation, and other cell cycle markers such as phosho-histone H3. 5′-Ethynyl-2′-deoxyuridine (EdU) incorporation is a thymidine analog that provides a sensitive method for the detection of DNA synthesis in proliferating cells that is a more convenient method than the traditional BrdU detection by antibody. Caspase 3 is activated in programmed cell death induced by both intrinsic (mitochondrial) and extrinsic factors (death ligand). Cell cycle and apoptosis are common parameters studied in the phenotypic analysis of compound toxicity and anti-cancer drugs. In this chapter, we describe methods for the detection of s-phase cell cycle progression by EdU incorporation, and caspase 3 activation using the CellEvent caspase 3/7 detection reagent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Towne DL, Emily EN, Comess KM et al (2012) Development of a high-content screening assay panel to accelerate mechanism of action studies for oncology research. J Biomol Screen 17(8):1005–1017

    Article  Google Scholar 

  2. Gou M, Hay BA (1999) Cell proliferation and apoptosis. Curr Opin Cell Biol 11:745–752

    Article  Google Scholar 

  3. Pucci B, Maragaret K, Giordano A (2000) Cell cycle and apoptosis. Neoplasia 2(4):291–299

    Article  CAS  Google Scholar 

  4. Pietenpol JA, Stewart ZA (2002) Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology 181-182:475–481

    Article  CAS  Google Scholar 

  5. Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182(3):311–322

    Article  CAS  Google Scholar 

  6. Gasparri F, Mariani M, Sola F (2004) Quantification of the proliferation index of human dermal fibroblast cultures with the ArrayScan™ high-content screening reader. J Biomol Screen 9(3):232–243

    Article  CAS  Google Scholar 

  7. Rothaeusler K, Baumgarth N (2006) Evaluation of intranuclear BrdU detection procedures for use in multicolor flow cytometry. Cytomtery A 69:249–259

    Article  Google Scholar 

  8. Salic A, Mitchinson TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105(7):2415–2420

    Article  CAS  Google Scholar 

  9. Buck SB, Bradford J, Gee K (2008) Detection of S-phase cell cycle progression using 5-ethynyl-2′-deoxyuridine incorporation with click chemistry, an alternative to using 5-bromo-2′-deoxyuridine antibodies. BioTechniques 44(7):927–929

    Article  CAS  Google Scholar 

  10. Diermeier-Daucher A, Clarke ST, Hill D (2009) Cell type specific applicability of 5-ehtynyl-2′-deoxyuridine (EdU) for dynamic proliferation assessment in flow cytometry. Cytometry 75A:535–546

    Article  CAS  Google Scholar 

  11. Limsirichaikul S, Niimi A, Fawcett H (2009) A rapid non-radioactive technique for measurement of repair synthesis in primary human fibroblasts by incorporation of ethynyl deoxyuridine (EdU). Nucleic Acids Res 37:1–10

    Article  Google Scholar 

  12. Crosby LM, Luellen C, Zhang Z (2011) Balance of life and death in alveolar epithelial type II cells: proliferation, apoptosis, and the effects of cyclic stretch on wound healing. Am J Physiol Lung Cell Mol Physiol 301:L536–L546

    Article  CAS  Google Scholar 

  13. Robertson FM, Ogasawara MA, Ye Z (2010) Imaging and analysis of 3D tumor spheroids enriched for a cancer stem cell phenotype. J Biomol Screen 15(7):820–828

    Article  CAS  Google Scholar 

  14. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  Google Scholar 

  15. Cullen SP, Martin SJ (2009) Caspase activation pathways: some recent progress. Cell Death Differ 16:935–938

    Article  CAS  Google Scholar 

  16. Cai J, Yang J, Jones DP (1998) Mitochondrial control of apoptosis: the role of cytochrome C. Biochim Biophys Acta 1366:139–149

    Article  CAS  Google Scholar 

  17. Saelens Z, Festjens N, Wande Valle L (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23:2861–2874

    Article  CAS  Google Scholar 

  18. Chinnaiyan AM, O’Rourke K, Tewari M et al (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81:505–512

    Article  CAS  Google Scholar 

  19. Chicheportiche Y, Bourdon PR, Xu H et al (1997) TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J Biol Chem 272:32401–32410

    Article  CAS  Google Scholar 

  20. Peter ME, Krammer PH (1998) Mechanisms of CD 95 (Apo-1/Fas)-mediated apoptosis. Curr Opin Immunol 10:545–551

    Article  CAS  Google Scholar 

  21. Uttamapinant C, Tangpeerachaikul A, Grecian S et al (2012) Fast, cell-compatible click chemistry with copper-chelating azides for bimolecular labeling. Angew Chem Int Ed 51:5852–5856

    Article  CAS  Google Scholar 

  22. Segawa K, Kurata S, Yanagihashi Y et al (2014) Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science 344:1164–1168

    Article  CAS  Google Scholar 

  23. Divya KR, Liu H, Ambudkar SV et al (2014) A combination of curcumin with either gramicidin or ouabain selectively kills cells that express the multi-drug resistance-linked ABCG2 transporter. J Biol Chem 289:31397–31410

    Article  Google Scholar 

  24. Bolanos JMG, Da Silva CMB, Munoz PM et al (2014) Phosphorylated AKT preserves stallion sperm viability and motility by inhibiting caspases 3 and 7. Reproduction 148:221–235

    Article  CAS  Google Scholar 

  25. Hristov G, Martilla T, Durand C (2014) SHOX triggers the lysosomal pathway of apoptosis via oxidative stress. Hum Mol Genet 23:1619–1630

    Article  CAS  Google Scholar 

  26. Anoop Chandran P, Keller A, Weinmann L (2014) Inflammation, extracellular mediators, and efgfector molecules: the TGF-β-inducible miR-23a cluster attenuates IFN levels and antigen-specific cytotoxicity in human CD8+ T cells. J Leukoc Biol 96:633–645

    Article  Google Scholar 

  27. Munoz MP, Ferrusola CO, Vizuete G et al (2015) Depletion of intracellular thiols and increased production of 4-hydroxynonenal that occur during cryopreservation of stallion spermatozoa lead to caspase activation, loss of motility, and cell death. Biol Reprod 93(6):1–11

    CAS  Google Scholar 

  28. Funk J, Biber N, Scneider M (2015) Cytotoxic and apoptotic effects of recombinant subtilase cytotoxin variants of shiga toxin-producing Escherichia coli. Infect Immun 83:2338–2349

    Article  CAS  Google Scholar 

  29. Fuchs R, Schwach G, Stracke A (2015) The anti-hypertensive drug prazosin induces apoptosis in the medullary thyroid carcinoma cell line TT. Anticancer Res 35:31–38

    CAS  Google Scholar 

  30. Sweetwyne MT, Gruenwald A, Niranjan T (2015) Notch 1 and Notch 2 in podocytes play differential roles during diabetic nephropathy development, Diabetes 64:4099–4111

    Google Scholar 

  31. Kular J, Tickner JC, Pavlos NJ (2015) Choline kinase β mutant exhibit reduced phosphocholine, elevated osteoclast activity, and low bone mass. J Biol Chem 290:1729–1742

    Article  Google Scholar 

  32. Dong DJ, Jing YP, Liu W (2015) The steroid hormone 2—hydroxyecdysone up regulates Ste-20 family serine/threonine kinase Hippo to induce programmed cell death. J Biol Chem 290:24738–24746

    Article  CAS  Google Scholar 

  33. Tsunoda T, Ishikura S, Doi K (2015) Establishment of a three-dimensional floating cell culture system for screening drugs targeting KRAS-mediated signaling molecules. Anticancer Res 35:4453–4459

    CAS  Google Scholar 

  34. Sergin I, Bhattacharya S, Emanuel R et al (2016) Inclusion bodies enriched for p62 and polyubiquitinated proteins in macrophages protect against atherosclerosis. Sci Signal 9:ra2

    Article  Google Scholar 

  35. Carpio MA, Michaud M, Zhou W (2015) BCL-2 family member BOK promotes apoptosis in response to endoplasmic reticulum stress. Proc Natl Acad Sci U S A 112:7201–7206

    Article  CAS  Google Scholar 

  36. Antczak C, Takagi T, Ramirez CN et al (2009) Live-cell imaging of caspase activation for high-content screening. J Biomol Screen 14(8):956–969

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar S. Mandavilli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mandavilli, B.S., Yan, M., Clarke, S. (2018). Cell-Based High Content Analysis of Cell Proliferation and Apoptosis. In: Johnston, P., Trask, O. (eds) High Content Screening. Methods in Molecular Biology, vol 1683. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7357-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7357-6_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7355-2

  • Online ISBN: 978-1-4939-7357-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics