Skip to main content

Detecting Multiethnic Rare Variants

  • Protocol
  • First Online:
Statistical Human Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1666))

  • 3499 Accesses

Abstract

Genome-wide association studies have identified many common genetic variants which are associated with certain diseases. The identified common variants, however, explain only a small portion of the heritability of a complex disease phenotype. The missing heritability motivated researchers to test the hypothesis that rare variants influence common diseases. Next-generation sequencing technologies have made the studies of rare variants practicable. Quite a few statistical tests have been developed for exploiting the cumulative effect of a set of rare variants on a phenotype. The best-known sequence kernel association tests (SKATs) were developed for rare variants analysis of homogeneous genomes. In this chapter, we illustrate applications of the SKATs and offer several caveats regarding them. In particular, we address how to modify the SKATs to integrate local allele ancestries and calibrate the cryptic relatedness and population structure of admixed genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Burton PR, Clayton DG, Cardon LR et al (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145):661–678

    Article  CAS  Google Scholar 

  2. Heid IM, Jackson AU, Randall JC et al (2010) Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet 42(11):949–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lango Allen H, Estrada K, Lettre G et al (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467(7317):832–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hindorff LA, Junkins HA, Hall P, et al (2011) A catalog of published genome-wide association studies http://www.genome.gov/26525384

  5. Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gudbjartsson DF, Walters GB, Thorleifsson G et al (2008) Many sequence variants affecting diversity of adult human height. Nat Genet 40(5):609–615

    Article  CAS  PubMed  Google Scholar 

  7. Lettre G, Jackson AU, Gieger C et al (2008) Identification of ten loci associated with height highlights new biological pathways in human growth. Nat Genet 40(5):584–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weedon MN, Lango H, Lindgren CM et al (2008) Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet 40(5):575–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wood AR, Esko T, Yang J et al (2014) Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet 46(11):1173–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pritchard JK (2001) Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 69(1):124–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zuk O, Hechter E, Sunyaev SR et al (2012) The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci U S A 109(4):1193–1198

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gorlov IP, Gorlova OY, Sunyaev SR et al (2008) Shifting paradigm of association studies: value of rare single-nucleotide polymorphisms. Am J Hum Genet 82(1):100–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11(6):415–425

    Article  CAS  PubMed  Google Scholar 

  14. Consortium GP (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073

    Article  CAS  Google Scholar 

  15. Cohen J, Pertsemlidis A, Kotowski IK et al (2005) Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet 37(2):161–165

    Article  CAS  PubMed  Google Scholar 

  16. Cohen JC, Pertsemlidis A, Fahmi S et al (2006) Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels. Proc Natl Acad Sci U S A 103(6):1810–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ji W, Foo JN, O’Roak BJ et al (2008) Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet 40(5):592–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nejentsev S, Walker N, Riches D et al (2009) Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324(5925):387–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Madsen BE, Browning SR (2009) A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 5(2):e1000384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Neale BM, Rivas MA, Voight BF et al (2011) Testing for an unusual distribution of rare variants. PLoS Genet 7(3):e1001322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin D-Y, Tang Z-Z (2011) A general framework for detecting disease associations with rare variants in sequencing studies. Am J Hum Genet 89(3):354–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Price AL, Kryukov GV, de Bakker PI et al (2010) Pooled association tests for rare variants in exon-resequencing studies. Am J Hum Genet 86(6):832–838

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wu MC, Lee S, Cai T et al (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89(1):82–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee S, Emond MJ, Bamshad MJ et al (2012) Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet 91(2):224–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luo L, Zhu Y, Xiong M (2012) Quantitative trait locus analysis for next-generation sequencing with the functional linear models. J Med Genet 49(8):513–524

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lupski JR, Belmont JW, Boerwinkle E et al (2011) Clan genomics and the complex architecture of human disease. Cell 147(1):32–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Najmabadi H, Hu H, Garshasbi M et al (2011) Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478(7367):57–63

    Article  CAS  PubMed  Google Scholar 

  28. Chakravarti A (2011) Genomics is not enough. Science 334(6052):15

    Article  CAS  PubMed  Google Scholar 

  29. Feng T, Elston RC, Zhu X (2011) Detecting rare and common variants for complex traits: sibpair and odds ratio weighted sum statistics (SPWSS, ORWSS). Genet Epidemiol 35(5):398–409

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhu X, Feng T, Li Y et al (2010) Detecting rare variants for complex traits using family and unrelated data. Genet Epidemiol 34(2):171–187

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhu Y, Xiong M (2012) Family-based association studies for next-generation sequencing. Am J Hum Genet 90(6):1028–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen H, Meigs JB, Dupuis J (2013) Sequence kernel association test for quantitative traits in family samples. Genet Epidemiol 37(2):196–204

    Article  PubMed  Google Scholar 

  33. Manichaikul A, Mychaleckyj JC, Rich SS et al (2010) Robust relationship inference in genome-wide association studies. Bioinformatics 26(22):2867–2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Davies RB (1980) The distribution of a linear combination of x2 random variables. Appl Stat 29(3):323–333

    Article  Google Scholar 

  35. Smith MW, O'Brien SJ (2005) Mapping by admixture linkage disequilibrium: advances, limitations and guidelines. Nat Rev Genet 6(8):623–632

    Article  CAS  PubMed  Google Scholar 

  36. Qin H, Morris N, Kang SJ et al (2010) Interrogating local population structure for fine mapping in genome-wide association studies. Bioinformatics 26(23):2961–2968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qin H, Zhu X (2012) Power comparison of admixture mapping and direct association analysis in genome-wide association studies. Genet Epidemiol 36(3):235–243

    Article  PubMed  PubMed Central  Google Scholar 

  38. Price AL, Patterson NJ, Plenge RM et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38(8):904–909

    Article  CAS  PubMed  Google Scholar 

  39. Yu J, Pressoir G, Briggs WH et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38(2):203–208

    Article  CAS  PubMed  Google Scholar 

  40. Mathieson I, McVean G (2012) Differential confounding of rare and common variants in spatially structured populations. Nat Genet 44(3):243–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Price AL, Zaitlen NA, Reich D et al (2010) New approaches to population stratification in genome-wide association studies. Nat Rev Genet 11(7):459–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mao X, Li Y, Liu Y et al (2013) Testing genetic association with rare variants in admixed populations. Genet Epidemiol 37(1):38–47

    Article  PubMed  Google Scholar 

  43. Guan Y (2014) Detecting structure of haplotypes and local ancestry. Genetics 196(3):625–642

    Article  PubMed  PubMed Central  Google Scholar 

  44. Thornton T, Tang H, Hoffmann TJ et al (2012) Estimating kinship in admixed populations. Am J Hum Genet 91(1):122–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Soave D, Corvol H, Panjwani N et al (2015) A joint location-scale test improves power to detect associated SNPs, gene sets, and pathways. Am J Hum Genet 97(1):125–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded in part by NIH grant HG003054 to X.Z. and by Tulane’s Committee on Research fellowship (600890) and Carol Lavin Bernick Faculty Grant (632119) to H.Q.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaizhen Qin Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ouyang, W., Zhu, X., Qin, H. (2017). Detecting Multiethnic Rare Variants. In: Elston, R. (eds) Statistical Human Genetics. Methods in Molecular Biology, vol 1666. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7274-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7274-6_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7273-9

  • Online ISBN: 978-1-4939-7274-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics