Skip to main content

DNA Methylation Analysis from Body Fluids

  • Protocol
  • First Online:
Urothelial Carcinoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1655))

Abstract

Circulating cell-free DNA (ccfDNA) can be found in various body fluids, i.e., blood (serum and plasma), urine, pleural effusions, and ascites. While ccfDNA predominantly originates from physiological processes, a fraction might be related to pathological events, e.g., cancer. Aberrant DNA methylation, which is considered a hallmark of cancer, can be assessed accurately in ccfDNA. Consequently, DNA methylation testing in body fluids represents a powerful diagnostic tool in the clinical management of malignant diseases. Frequently, however, the total amount of disease-related ccfDNA in a sample is low and masked by an excess of physiological ccfDNA. Thus, DNA methylation analysis of tumor-derived DNA is challenging, and high volumes of body fluids need to be analyzed in order to ensure a sufficient abundance of the analyte in the test sample. DNA methylation assays are usually based on prior conversion of cytosines to uracils by means of bisulfite. This reaction takes place under harsh chemical conditions leading to DNA degradation and therefore necessitates a proper DNA purification before downstream analyses. This article describes a protocol which allows for the preparation of ultra-pure bisulfite-converted DNA from up to 3 ml blood plasma and serum, which is well suited for subsequent molecular biological techniques, e.g., methylation-specific real-time PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Taby R, Issa JP (2010) Cancer epigenetics. CA Cancer J Clin 60:376–392. doi:10.3322/caac.20085

    Article  PubMed  Google Scholar 

  2. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492. doi:10.1038/nrg3230

    Article  CAS  PubMed  Google Scholar 

  3. Shen H, Laird PW (2013) Interplay between the cancer genome and epigenome. Cell 153:38–55. doi:10.1016/j.cell.2013.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Diaz LA Jr, Bardelli A (2014) Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 32:579–586. doi:10.1200/JCO.2012.45.2011

    Article  PubMed  PubMed Central  Google Scholar 

  5. Desrochers LM, Antonyak MA, Cerione RA (2016) Extracellular vesicles: satellites of information transfer in cancer and stem cell biology. Dev Cell 37:301–309. doi:10.1016/j.devcel.2016.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dietrich D (2016) Current status and future perspectives of circulating cell-free DNA methylation in clinical diagnostics. LaboratoriumsMedizin 40:335–343. doi:10.1515/labmed-2016-0039

    Article  CAS  Google Scholar 

  7. Frommer M, McDonald LE, Millar DS et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89:1827–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hayatsu H (2008) The bisulfite genomic sequencing used in the analysis of epigenetic states, a technique in the emerging environmental genotoxicology research. Mutat Res 659:77–82. doi:10.1016/j.mrrev.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  9. Holmes EE, Jung M, Meller S et al (2014) Performance evaluation of kits for bisulfite-conversion of DNA from tissues, cell lines, FFPE tissues, aspirates, lavages, effusions, plasma, serum, and urine. PLoS One 9:e93933. doi:10.1371/journal.pone.0093933

    Article  PubMed  PubMed Central  Google Scholar 

  10. Raizis AM, Schmitt F, Jost JP (1995) A bisulfite method of 5-methylcytosine mapping that minimizes template degradation. Anal Biochem 226:161–166. doi:10.1006/abio.1995.1204

    Article  CAS  PubMed  Google Scholar 

  11. Grunau C, Clark SJ, Rosenthal A (2001) Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res 29(13):E65–E65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tanaka K, Okamoto A (2007) Degradation of DNA by bisulfite treatment. Bioorg Med Chem Lett 17:1912–1915. doi:10.1016/j.bmcl.2007.01.040

    Article  CAS  PubMed  Google Scholar 

  13. Darst RP, Pardo CE, Ai L, et al (2010) Bisulfite sequencing of DNA. Curr Protoc Mol Biol. Chapter 7:Unit 7.9.1–17. doi: 10.1002/0471142727.mb0709s91.

  14. Millar DS, Warnecke PM, Melki JR et al (2002) Methylation sequencing from limiting DNA: embryonic, fixed, and microdissected cells. Methods 27(2):108–113

    Article  CAS  PubMed  Google Scholar 

  15. Boyd VL, Zon G (2004) Bisulfite conversion of genomic DNA for methylation analysis: protocol simplification with higher recovery applicable to limited samples and increased throughput. Anal Biochem 326:278–280. doi:10.1016/j.ab.2003.11.020

    Article  CAS  PubMed  Google Scholar 

  16. Hayatsu H, Negishi K, Shiraishi M (2004) Accelerated bisulfite-deamination of cytosine in the genomic sequencing procedure for DNA methylation analysis. Nucleic Acids Symp Ser (Oxf) 48:261–262. doi:10.1093/nass/48.1.261

    Article  Google Scholar 

  17. Hayatsu H, Shiraishi M, Negishi K (2008) Bisulfite modification for analysis of DNA methylation. Curr Protoc Nucleic Acid Chem. Chapter 6:Unit 6.10. doi: 10.1002/0471142700.nc0610s33.

  18. Shiraishi M, Hayatsu H (2004) High-speed conversion of cytosine to uracil in bisulfite genomic sequencing analysis of DNA methylation. DNA Res 11:409–415

    Article  CAS  PubMed  Google Scholar 

  19. Warton K, Samimi G (2015) Methylation of cell-free circulating DNA in the diagnosis of cancer. Front Mol Biosci 2:13. doi:10.3389/fmolb.2015.00013

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dietrich D, Jung M, Puetzer S et al (2013) Diagnostic and prognostic value of SHOX2 and SEPT9 DNA methylation and cytology in benign, paramalignant and malignant pleural effusions. PLoS One 8(12):e84225. doi:10.1371/journal.pone.0084225

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Conflict of Interest: Dimo Dietrich is a consultant for AJ Innuscreen GmbH (Berlin, Germany) and receives royalties from product sales (innuCONVERT kits).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimo Dietrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Dietrich, D. (2018). DNA Methylation Analysis from Body Fluids. In: Schulz, W., Hoffmann, M., Niegisch, G. (eds) Urothelial Carcinoma. Methods in Molecular Biology, vol 1655. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7234-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7234-0_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7233-3

  • Online ISBN: 978-1-4939-7234-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics