Skip to main content

Development of Selected Reaction Monitoring Methods to Systematically Quantify Kinase Abundance and Phosphorylation Stoichiometry in Human Samples

  • Protocol
  • First Online:
Kinase Signaling Networks

Abstract

Protein phosphorylation, one of the most common types of post-translational modifications, is the central regulatory mechanism of cellular signaling networks. In human cells, thousands of proteins are continuously and dynamically phosphorylated and dephosphorylated at specific sites and times in response to external and internal stimuli. Reversible phosphorylation is facilitated by the action of two protein superfamilies: kinases and phosphatases. Kinases play an essential role in almost every relevant physiological process in human cells and their deregulation is linked to pathologies ranging from cancer to autoimmune diseases.

Systematic identification of kinases expressed in a particular cell type, quantification of their abundance, and precise determination of their phosphorylation stoichiometry are essential to understand the cellular signaling networks and physiology of a sample. Our protocol outlines the steps to build and use a high-throughput, comprehensive, modular, and robust selected reaction monitoring (SRM) proteomics framework to facilitate quantification of the kinome state in research or clinical human samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hunter T (2000) Signaling—2000 and beyond. Cell 100(1):113–127

    Article  CAS  PubMed  Google Scholar 

  2. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134. doi:10.1016/j.cell.2010.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ubersax JA, Ferrell JE Jr (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8(7):530–541. doi:10.1038/nrm2203

    Article  CAS  PubMed  Google Scholar 

  4. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934. doi:10.1126/science.1075762

    Article  CAS  PubMed  Google Scholar 

  5. Shen K, Hines AC, Schwarzer D, Pickin KA, Cole PA (2005) Protein kinase structure and function analysis with chemical tools. Biochim Biophys Acta 1754(1–2):65–78. doi:10.1016/j.bbapap.2005.08.020

    Article  CAS  PubMed  Google Scholar 

  6. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  7. Yoshii A, Constantine-Paton M (2010) Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol 70(5):304–322. doi:10.1002/dneu.20765

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hahn C-G (2011) A Src link in schizophrenia. Nat Med 17(4):425–427

    Article  CAS  PubMed  Google Scholar 

  9. Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7(2):85–96. doi:10.1038/nrm1837

    Article  CAS  PubMed  Google Scholar 

  10. Gatzka M, Walsh CM (2007) Apoptotic signal transduction and T cell tolerance. Autoimmunity 40(6):442–452. doi:10.1080/08916930701464962

    Article  CAS  PubMed  Google Scholar 

  11. Braun S, Bitton-Worms K, LeRoith D (2011) The link between the metabolic syndrome and cancer. Int J Biol Sci 7(7):1003–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sirard JC, Vignal C, Dessein R, Chamaillard M (2007) Nod-like receptors: cytosolic watchdogs for immunity against pathogens. PLoS Pathog 3(12):e152. doi:10.1371/journal.ppat.0030152

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA, White FM (2005) Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics 4(9):1240–1250. doi:10.1074/mcp.M500089-MCP200

    Article  CAS  PubMed  Google Scholar 

  14. Wolf-Yadlin A, Hautaniemi S, Lauffenburger DA, White FM (2007) Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc Natl Acad Sci U S A 104(14):5860–5865. doi:10.1073/pnas.0608638104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Geiger T, Cox J, Ostasiewicz P, Wisniewski JR, Mann M (2010) Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 7(5):383–385. doi:10.1038/nmeth.1446

    Article  CAS  PubMed  Google Scholar 

  16. Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, Peterson TR, Choi Y, Gray NS, Yaffe MB, Marto JA, Sabatini DM (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332(6035):1317–1322. doi:10.1126/science.1199498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schilling B, Rardin MJ, MacLean BX, Zawadzka AM, Frewen BE, Cusack MP, Sorensen DJ, Bereman MS, Jing E, Wu CC, Verdin E, Kahn CR, Maccoss MJ, Gibson BW (2012) Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline: application to protein acetylation and phosphorylation. Mol Cell Proteomics 11(5):202–214. doi:10.1074/mcp.M112.017707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26(7):966–968. doi:10.1093/bioinformatics/btq054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stergachis AB, MacLean B, Lee K, Stamatoyannopoulos JA, MacCoss MJ (2011) Rapid em pirical discovery of optimal peptides for targeted proteomics. Nat Methods 8(12):1041–1043. doi:10.1038/nmeth.1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ebhardt HA, Sabidó E, Hüttenhain R, Collins B, Aebersold R (2012) Range of protein detection by selected/multiple reaction monitoring mass spectrometry in an unfractionated human cell culture lysate. Proteomics 12(8):1185–1193. doi:10.1002/pmic.201100543

    Article  CAS  PubMed  Google Scholar 

  21. Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ (2012) Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics 11(11):1475–1488. doi:10.1074/mcp.O112.020131

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kim YJ, Gallien S, van Oostrum J, Domon B (2013) Targeted proteomics strategy applied to biomarker evaluation. Proteomics Clin Appl 7(11–12):739–747. doi:10.1002/prca.201300070

    Article  CAS  PubMed  Google Scholar 

  23. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207. doi:10.1038/nature01511

    Article  CAS  PubMed  Google Scholar 

  24. Bateman NW, Goulding SP, Shulman NJ, Gadok AK, Szumlinski KK, MacCoss MJ, Wu CC (2014) Maximizing peptide identification events in proteomic workflows using data-dependent acquisition (DDA). Mol Cell Proteomics 13(1):329–338. doi:10.1074/mcp.M112.026500

    Article  CAS  PubMed  Google Scholar 

  25. Sharma V, Eckels J, Taylor GK, Shulman NJ, Stergachis AB, Joyner SA, Yan P, Whiteaker JR, Halusa GN, Schilling B, Gibson BW, Colangelo CM, Paulovich AG, Carr SA, Jaffe JD, MacCoss MJ, MacLean B (2014) Panorama: a targeted proteomics knowledge base. J Proteome Res 13(9):4205–4210. doi:10.1021/pr5006636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McAllister FE, Niepel M, Haas W, Huttlin E, Sorger PK, Gygi SP (2013) Mass spectrometry based method to increase throughput for kinome analyses using ATP probes. Anal Chem 85(9):4666–4674. doi:10.1021/ac303478g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xiao Y, Guo L, Wang Y (2014) A targeted quantitative proteomics strategy for global kinome profiling of cancer cells and tissues. Mol Cell Proteomics 13(4):1065–1075. doi:10.1074/mcp.M113.036905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Worboys JD, Sinclair J, Yuan Y, Jorgensen C (2014) Systematic evaluation of quantotypic peptides for targeted analysis of the human kinome. Nat Methods 11(10):1041–1044. doi:10.1038/nmeth.3072. http://www.nature.com/nmeth/journal/v11/n10/abs/nmeth.3072.html#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Domanski D, Murphy LC, Borchers CH (2010) Assay development for the determination of phosphorylation stoichiometry using multiple reaction monitoring methods with and without phosphatase treatment: application to breast cancer signaling pathways. Anal Chem 82(13):5610–5620. doi:10.1021/ac1005553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Johnson H, Eyers CE, Eyers PA, Beynon RJ, Gaskell SJ (2009) Rigorous determination of the stoichiometry of protein phosphorylation using mass spectrometry. J Am Soc Mass Spectrom 20(12):2211–2220. doi:10.1016/j.jasms.2009.08.009

    Article  CAS  PubMed  Google Scholar 

  31. Wu R, Haas W, Dephoure N, Huttlin EL, Zhai B, Sowa ME, Gygi SP (2011) A large-scale method to measure absolute protein phosphorylation stoichiometries. Nat Methods 8(8):677–683. doi:10.1038/nmeth.1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Escher C, Reiter L, MacLean B, Ossola R, Herzog F, Chilton J, MacCoss MJ, Rinner O (2012) Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics 12(8):1111–1121. doi:10.1002/pmic.201100463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Von Haller PD (2013) Packing capillary columns and pre-columns (traps). University of Washington Proteomics Resource. http://proteomicsresource.washington.edu/docs/protocols05/Packing_Capillary_Columns.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Wolf-Yadlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Beck, K. et al. (2017). Development of Selected Reaction Monitoring Methods to Systematically Quantify Kinase Abundance and Phosphorylation Stoichiometry in Human Samples. In: Tan, AC., Huang, P. (eds) Kinase Signaling Networks. Methods in Molecular Biology, vol 1636. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7154-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7154-1_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7152-7

  • Online ISBN: 978-1-4939-7154-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics