Skip to main content

The Limitations of Existing Approaches in Improving MicroRNA Target Prediction Accuracy

  • Protocol
  • First Online:
Bioinformatics in MicroRNA Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1617))

Abstract

MicroRNAs (miRNAs) are small (18–24 nt) endogenous RNAs found across diverse phyla involved in posttranscriptional regulation, primarily downregulation of mRNAs. Experimentally determining miRNA–mRNA interactions can be expensive and time-consuming, making the accurate computational prediction of miRNA targets a high priority. Since miRNA–mRNA base pairing in mammals is not perfectly complementary and only a fraction of the identified motifs are real binding sites, accurately predicting miRNA targets remains challenging. The limitations and bottlenecks of existing algorithms and approaches are discussed in this chapter.

A new miRNA–mRNA interaction algorithm was implemented in Python (TargetFind) to capture three different modes of association and to maximize detection sensitivity to around 95% for mouse (mm9) and human (hg19) reference data. For human (hg19) data, the prediction accuracy with any one feature among evolutionarily conserved score, multiple targets in a UTR or changes in free energy varied within a close range from 63.5% to 66%. When the results of these features are combined with majority voting, the expected prediction accuracy increases to 69.5%. When all three features are used together, the average best prediction accuracy with tenfold cross validation from the classifiers naïve Bayes, support vector machine, artificial neural network, and decision tree were, respectively, 66.5%, 67.1%, 69%, and 68.4%. The results reveal the advantages and limitations of these approaches.

When comparing different sets of features on their strength in predicting true hg19 targets, evolutionarily conserved score slightly outperformed all other features based on thermostability, and target multiplicity. The sophisticated supervised learning algorithms did not improve the prediction accuracy significantly compared to a simple threshold based approach on conservation score or combining the results of each feature with majority agreements. The targets from randomly generated UTRs behaved similar to that of noninteracting pairs with respect to changes in free energy. Availability of additional experimental data describing noninteracting pairs will advance our understanding of the characteristics and the factors positively and negatively influencing these interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural network

PWM:

Position weighted matrix

ROC:

Receiver operating characteristic

SOM:

Self-organizing map

SVM:

Support vector machine

UTR:

Untranslated region

References

  1. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36(Database issue):D154–D158

    CAS  PubMed  Google Scholar 

  2. Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, Maragkakis M, Reczko M, Gerangelos S, Koziris N, Dalamagas T, Hatzigeorgiou AG (2012) TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 40(Database issue):D222–D229

    Article  CAS  PubMed  Google Scholar 

  3. Sethupathy P, Corda B, Hatzigeorgiou AG (2006) TarBase: a comprehensive database of experimentally supported animal microRNA targets. RNA 12(2):192–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37(Database issue):D105–D110

    Article  CAS  PubMed  Google Scholar 

  5. Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ, Lee CJ, Chiu CM et al (2011) miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 39(Database issue):D163–D169

    Article  CAS  PubMed  Google Scholar 

  6. Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37(Database issue):D98–104

    Article  CAS  PubMed  Google Scholar 

  7. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278–1284

    Article  CAS  PubMed  Google Scholar 

  8. Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y (2007) Potent effect of target structure on microRNA function. Nat Struct Mol Biol 14(4):287–294

    Article  CAS  PubMed  Google Scholar 

  9. Heikkinen L, Kolehmainen M, Wong G (2011) Prediction of microRNA targets in Caenorhabditis elegans using a self-organizing map. Bioinformatics 27(9):1247–1254

    Article  CAS  PubMed  Google Scholar 

  10. Liu H, Yue D, Chen Y, Gao SJ, Huang Y (2010) Improving performance of mammalian microRNA target prediction. BMC Bioinformatics 11:476

    Article  PubMed  PubMed Central  Google Scholar 

  11. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in drosophila. Genome Biol 5(1):R1

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yousef M, Jung S, Kossenkov AV, Showe LC, Showe MK (2007) Naive Bayes for microRNA target predictions—machine learning for microRNA targets. Bioinformatics 23(22):2987–2992

    Article  CAS  PubMed  Google Scholar 

  13. Mendoza MR, da Fonseca GC, Loss-Morais G, Alves R, Margis R, Bazzan AL (2013) RFMirTarget: predicting human MicroRNA target genes with a random Forest classifier. PLoS One 8(7):e70153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500

    Article  CAS  PubMed  Google Scholar 

  15. Wang X, El Naqa IM (2008) Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 24(3):325–332

    Article  PubMed  Google Scholar 

  16. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10(10):1507–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    Article  CAS  PubMed  Google Scholar 

  18. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA targets. PLoS Biol 2(11):e363

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nam S, Kim B, Shin S (2008) Lee S: miRGator: an integrated system for functional annotation of microRNAs. Nucleic Acids Res 36(Database issue):D159–D164

    CAS  PubMed  Google Scholar 

  20. Vejnar CE, Zdobnov EM (2012) MiRmap: comprehensive prediction of microRNA target repression strength. Nucleic Acids Res 40(22):11673–11683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Incarnato D, Neri F, Diamanti D, Oliviero S (2013) MREdictor: a two-step dynamic interaction model that accounts for mRNA accessibility and Pumilio binding accurately predicts microRNA targets. Nucleic Acids Res 41(18):8421–8433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460(7254):479–486

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3(3):e85

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lekprasert P, Mayhew M, Ohler U (2011) Assessing the utility of thermodynamic features for microRNA target prediction under relaxed seed and no conservation requirements. PLoS One 6(6):e20622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hofacker IL (2004) RNA secondary structure analysis using the Vienna RNA package. Curr Protoc Bioinformatics Chapter 12:Unit 12

    Google Scholar 

  27. Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL (2008) The Vienna RNA websuite. Nucleic Acids Res 36(Web Server issue):W70–W74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Muckstein U, Tafer H, Hackermuller J, Bernhart SH, Stadler PF, Hofacker IL (2006) Thermodynamics of RNA-RNA binding. Bioinformatics 22(10):1177–1182

    Article  PubMed  Google Scholar 

  29. Haider S, Ballester B, Smedley D, Zhang J, Rice P, Kasprzyk A (2009) BioMart central portal—unified access to biological data. Nucleic Acids Res 37:23–27

    Article  Google Scholar 

  30. bedtools (2012) In., 2.16.2 edn: http://code.google.com/p/bedtools/

  31. Ivanciuc O (2008) Weka machine learning for predicting the phospholipidosis inducing potential. Curr Top Med Chem 8(18):1691–1709

    Article  CAS  PubMed  Google Scholar 

  32. Frank E, Hall M, Trigg L, Holmes G, Witten IH (2004) Data mining in bioinformatics using Weka. Bioinformatics 20(15):2479–2481

    Article  CAS  PubMed  Google Scholar 

  33. Pereira F, Mitchell T, Botvinick M (2009) Machine learning classifiers and fMRI: a tutorial overview. NeuroImage 45(1 Suppl):S199–S209

    Article  PubMed  Google Scholar 

  34. Baldi P, Brunak S (2001) Bioinformatics: the machine learning approach, 2nd edn. MIT Press, Cambridge, MA

    Google Scholar 

  35. Mitchell TM (1997) Machine learning. McGraw-Hill, New York, NY

    Google Scholar 

  36. Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12(4):656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Friedman Y, Naamati G, Linial M (2010) MiRror: a combinatorial analysis web tool for ensembles of microRNAs and their targets. Bioinformatics 26(15):1920–1921

    Article  CAS  PubMed  Google Scholar 

  38. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63

    Article  CAS  PubMed  Google Scholar 

  40. Erhard F, Dolken L, Jaskiewicz L, Zimmer R (2013) PARma: identification of microRNA target sites in Argonaute PAR-CLIP data. Genome Biol 14(7):R79

    Article  PubMed  PubMed Central  Google Scholar 

  41. van Iterson M, Bervoets S, de Meijer EJ, Buermans HP, Hoen PA, Menezes RX, Boer JM (2013) Integrated analysis of microRNA and mRNA expression: adding biological significance to microRNA target predictions. Nucleic Acids Res 41(15):e146

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

Our sincere thanks to Hui Liu for sharing the noninteracting data set that they have collected on human genome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasiah Loganantharaj Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Loganantharaj, R., Randall, T.A. (2017). The Limitations of Existing Approaches in Improving MicroRNA Target Prediction Accuracy. In: Huang, J., et al. Bioinformatics in MicroRNA Research. Methods in Molecular Biology, vol 1617. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7046-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7046-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7044-5

  • Online ISBN: 978-1-4939-7046-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics