Skip to main content

Functional Analysis of OMICs Data and Small Molecule Compounds in an Integrated “Knowledge-Based” Platform

  • Protocol
  • First Online:
Biological Networks and Pathway Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1613))

Abstract

Analysis of NGS and other sequencing data, gene variants, gene expression, proteomics, and other high-throughput (OMICs) data is challenging because of its biological complexity and high level of technical and biological noise. One way to deal with both problems is to perform analysis with a high fidelity annotated knowledgebase of protein interactions, pathways, and functional ontologies. This knowledgebase has to be structured in a computer-readable format and must include software tools for managing experimental data, analysis, and reporting. Here, we present MetaCore™ and Key Pathway Advisor (KPA), an integrated platform for functional data analysis. On the content side, MetaCore and KPA encompass a comprehensive database of molecular interactions of different types, pathways, network models, and ten functional ontologies covering human, mouse, and rat genes. The analytical toolkit includes tools for gene/protein list enrichment analysis, statistical “interactome” tool for the identification of over- and under-connected proteins in the dataset, and a biological network analysis module made up of network generation algorithms and filters. The suite also features Advanced Search, an application for combinatorial search of the database content, as well as a Java-based tool called Pathway Map Creator for drawing and editing custom pathway maps. Applications of MetaCore and KPA include molecular mode of action of disease research, identification of potential biomarkers and drug targets, pathway hypothesis generation, analysis of biological effects for novel small molecule compounds and clinical applications (analysis of large cohorts of patients, and translational and personalized medicine).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Salwinski L, Eisenberg D (2003) Computational methods of analysis of protein–protein interactions. Curr Opin Struct Biol 13:377–382

    Article  CAS  PubMed  Google Scholar 

  2. Kemmeren P et al (2002) Protein interaction verification and functional annotation by integrated analysis of genome-scale data. Mol Cell 9:1133–1143

    Article  CAS  PubMed  Google Scholar 

  3. Ceccarelli M, Barthel FP et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164(3):550–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. The Cancer Genome Atlas Network (2015) The molecular taxonomy of primary prostate cancer. Cell 163(4):1011–1025

    Article  Google Scholar 

  5. The Cancer Genome Atlas Network (2015) Comprehensive molecular characterization of papillary renal cell carcinoma. N Engl J Med 374(2):135–145

    Article  Google Scholar 

  6. Ciriello G, Gatza ML et al (2015) Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163(2):506–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 8(2):e1002375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jin L, Zuo X-Y, Su W-Y et al (2014) Pathway-based analysis tools for complex diseases: a review. Genomics Proteomics Bioinformatics 12(5):210–220

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yook SH, Oltvai ZN, Barabási AL (2004) Functional and topological characterization of protein interaction networks. Proteomics 4(4):928–922

    Article  CAS  PubMed  Google Scholar 

  10. Barabasi AL, Oltvai Z (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113

    Article  CAS  PubMed  Google Scholar 

  11. Bader S, Kühner S, Gavin AC (2008) Interaction networks for systems biology. FEBS Lett 582(8):1220–1224

    Article  CAS  PubMed  Google Scholar 

  12. Nitsch D, Gonçalves JP, Ojeda F, de Moor B, Moreau Y (2010) Candidate gene prioritization by network analysis of differential expression using machine learning approaches. BMC Bioinformatics 11:460

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hsu C-L, Huang Y-H, Hsu C-T, Yang U-C (2011) Prioritizing disease candidate genes by a gene interconnectedness-based approach. BMC Genomics 12(Suppl 3):S25

    Article  CAS  PubMed Central  Google Scholar 

  14. Köhler S, Bauer S, Horn D, Robinson PN (2008) Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet 82(4):949–958

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R (2010) Associating genes and protein complexes with disease via network propagation. PLoS Comput Biol 6(1):e1000641

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen J, Aronow BJ, Jegga AG (2009) Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics 10:73

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chindelevitch L, Ziemek D, Enayetallah A et al (2012) Causal reasoning on biological networks: interpreting transcriptional changes. Bioinformatics 28:1114–1121

    Article  CAS  PubMed  Google Scholar 

  18. Li X, Shen L, Shang X, Liu W (2015) Subpathway analysis based on signaling-pathway impact analysis of signaling pathway. PLoS One 10(7):e0132813

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ulitsky I, Krishnamurthy A, Karp RM, Shamir R (2010) DEGAS: de novo discovery of dysregulated pathways in human diseases. PLoS One 5(10):e13367

    Article  PubMed  PubMed Central  Google Scholar 

  20. Leiserson MDM, Vandin F, Wu H-T et al (2015) Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat Genet 47(2):106–114

    Article  CAS  PubMed  Google Scholar 

  21. Hendrix W, Rocha AM, Padmanabhan K et al (2011) DENSE: efficient and prior knowledge-driven discovery of phenotype-associated protein functional modules. BMC Syst Biol 5:172

    Article  PubMed Central  Google Scholar 

  22. Shannon P, Markiel A et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed Central  Google Scholar 

  23. Paull EO, Carlin DE, Niepel M et al (2013) Discovering causal pathways linking genomic events to transcriptional states using tied diffusion through interacting events (TieDIE). Bioinformatics 29(21):2757–2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Suthram S, Beyer A, Karp RM, Eldar Y, Ideker T (2008) eQED: an efficient method for interpreting eQTL associations using protein networks. Mol Syst Biol 4:162

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vaske CJ, Benz SC, Sanborn JZ et al (2010) Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 26(12):i237–i245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Purcell S et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pollard J Jr, Butte AJ, Hoberman S, Joshi M, Levy J, Pappo J (2005) A computational model to define the molecular causes of type 2 diabetes mellitus. Diabetes Technol Ther 7(2):323–336

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Dubovenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Dubovenko, A., Nikolsky, Y., Rakhmatulin, E., Nikolskaya, T. (2017). Functional Analysis of OMICs Data and Small Molecule Compounds in an Integrated “Knowledge-Based” Platform. In: Tatarinova, T., Nikolsky, Y. (eds) Biological Networks and Pathway Analysis. Methods in Molecular Biology, vol 1613. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7027-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7027-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7025-4

  • Online ISBN: 978-1-4939-7027-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics