Skip to main content

Identifying and Overcoming Crystal Pathologies: Disorder and Twinning

  • Protocol
  • First Online:
Protein Crystallography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1607))

Abstract

Macromolecular crystals are prone to a number of pathologies that result from aberrant molecular packing. Two common pathologies encountered in macromolecular crystals are rigid-body disorder and twinning. When a crystal displays one of these pathologies, its diffraction pattern is altered in a way that generally complicates structure determination. The severity of the underlying abnormalities varies from case to case, and sometimes the resulting alterations to the diffraction pattern are immediately obvious, while at other times they may go entirely unnoticed. Structure determination from a crystal that suffers from disorder or twinning may or may not be possible, depending on the specific nature of the pathology, and on how the data are handled. This chapter provides an introduction to these pathologies, with an emphasis on providing guidelines for identifying and overcoming them when they pose a threat to successful structure determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Janin J, Rodier F (1995) Protein-protein interaction at crystal contacts. Proteins 23:580–587

    Article  CAS  PubMed  Google Scholar 

  2. TO Y, Fam BC (1999) Protein crystals and their evil twins. Structure 7:R25–R29

    Article  Google Scholar 

  3. Lebedev AA, Vagin AA, Murshudov GN (2006) Intensity statistics in twinned crystals with examples from the PDB. Acta Crystallogr D Biol Crystallogr 62:83–95

    Article  PubMed  Google Scholar 

  4. Yeates TO (1997) Detecting and overcoming crystal twinning. Methods Enzymol 276:344–358

    Article  Google Scholar 

  5. Ayyer K, Yefanov OM, Oberthür D et al (2016) Macromolecular diffractive imaging using imperfect crystals. Nature 530:202–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dornberger-Schiff K (1956) On order–disorder structures (OD-structures). Acta Crystallogr 9:593–601

    Article  CAS  Google Scholar 

  7. Dornberger-Schiff K, Grell-Niemann H (1961) On the theory of order–disorder (OD) structures. Acta Crystallogr 14:167–177

    Article  Google Scholar 

  8. Bragg WL, Howells ER (1954) X-ray diffraction by imidazole methaemoglobin. Acta Crystallogr 7:409–411

    Article  CAS  Google Scholar 

  9. Cochran W, Howells ER (1954) X-ray diffraction by a layer structure containing random displacements. Acta Crystallogr 7:412–415

    Article  CAS  Google Scholar 

  10. Rupp B (2009) Biomolecular crystallography: principles, practice, and application to structural biology. Garland Science, New York

    Google Scholar 

  11. Lerch TF, Xie Q, Ongley HM et al (2009) Twinned crystals of adeno-associated virus serotype 3b prove suitable for structural studies. Acta Crystallogr F Struct Biol Commun 65:177–183

    Article  CAS  Google Scholar 

  12. Ginn HM, Stuart DI (2016) Recovery of data from perfectly twinned virus crystals revisited. Acta Crystallogr D Struct Biol 72:817–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pletnev S, Morozova KS, Verkhusha VV et al (2009) Rotational order-disorder structure of fluorescent protein FP480. Acta Crystallogr D Biol Crystallogr 65:906–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pletnev S, Subach FV, Verkhusha VV et al (2013) The rotational order–disorder structure of the reversibly photoswitchable red fluorescent protein rsTagRFP. Acta Crystallogr D Biol Crystallogr 70:31–39

    Article  PubMed  PubMed Central  Google Scholar 

  15. Renko M, Taler-Verčič A, Mihelič M (2014) Partial rotational lattice order–disorder in stefin B crystals. Acta Crystallogr D Biol Crystallogr 70:1015–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Robbins AH, Domsic JF, Agbandje-McKenna M et al (2010) Emerging from pseudo-symmetry: the redetermination of human carbonic anhydrase II in monoclinic P2(1) with a doubled a axis. Acta Crystallogr D Biol Crystallogr 66:950–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Welberry TR (2010) Diffuse X-ray scattering and models of disorder. Oxford University Press, Oxford

    Google Scholar 

  18. Helliwell JR (2008) Macromolecular crystal twinning, lattice disorders and multiple crystals. Crystallogr Rev 14:189–250

    Article  CAS  Google Scholar 

  19. Wang J, Kamtekar S, Berman AJ et al (2005) Correction of X-ray intensities from single crystals containing lattice-translocation defects. Acta Crystallogr D Biol Crystallogr 61:67–74

    Article  PubMed  Google Scholar 

  20. Kamtekar S, Berman AJ, Wang J, Lázaro JM et al (2004) Insights into strand displacement and processivity from the crystal structure of the protein-primed DNA polymerase of bacteriophage φ29. Mol Cell 16:609–618

    Article  CAS  PubMed  Google Scholar 

  21. Tsai Y, Sawaya MR, Yeates TO (2009) Analysis of lattice-translocation disorder in the layered hexagonal structure of carboxysome shell protein CsoS1C. Acta Crystallogr D Biol Crystallogr 65:980–988

    Article  CAS  PubMed  Google Scholar 

  22. Rye CA, Isupov MN, Lebedev AA et al (2007) An order-disorder twin crystal of L-2-haloacid dehalogenase from Sulfolobus tokodaii. Acta Crystallogr D Biol Crystallogr 63:926–930

    Article  CAS  PubMed  Google Scholar 

  23. Hwang WC, Lin Y, Santelli E, Sui J et al (2006) Structural basis of neutralization by a human anti-severe acute respiratory syndrome spike protein antibody, 80R. J Biol Chem 281:34610–34616

    Article  CAS  PubMed  Google Scholar 

  24. Trame CB, McKay DB (2001) Structure of Haemophilus influenzae HslU protein in crystals with one-dimensional disorder twinning. Acta Crystallogr D Biol Crystallogr 57:1079–1090

    Article  CAS  PubMed  Google Scholar 

  25. Zhu X, Xu X, Wilson IA (2008) Structure determination of the 1918 H1N1 neuraminidase from a crystal with lattice-translocation defects. Acta Crystallogr D Biol Crystallogr 64:843–850

    Article  CAS  PubMed Central  Google Scholar 

  26. Tanaka S, Kerfeld CA, Sawaya MR et al (2008) Atomic-level models of the bacterial carboxysome shell. Science 319:1083–1086

    Article  CAS  PubMed  Google Scholar 

  27. Heras B, Martin JL (2005) Post-crystallization treatments for improving diffraction quality of protein crystals. Acta Crystallogr D Biol Crystallogr 61:1173–1180

    Article  PubMed  Google Scholar 

  28. Lin T, Schildkamp W, Brister K et al (2005) The mechanism of high-pressure-induced ordering in a macromolecular crystal. Acta Crystallogr D Biol Crystallogr 61:737–743

    Article  PubMed  Google Scholar 

  29. Bernstein FC, Koetzle TF, Williams GJB et al (1997) The protein data bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    Article  Google Scholar 

  30. Friedel G (1926) Lecons de Cristallographie. Berger-Levrault, Paris

    Google Scholar 

  31. Dhillon AK, Stanfield RL, Gorny MK et al (2008) Structure determination of an anti-HIV-1 Fab 447-52D–peptide complex from an epitaxially twinned data set. Acta Crystallogr D Biol Crystallogr 64:792–802

    Article  CAS  PubMed Central  Google Scholar 

  32. Dauter Z, Botos I, LaRonde-LeBlanc N et al (2003) Pathological crystallography: case studies of several unusual macromolecular crystals. Acta Crystallogr D Biol Crystallogr 61:967–975

    Article  Google Scholar 

  33. Dauter Z (2003) Twinned crystals and anomalous phasing. Acta Crystallogr D Biol Crystallogr 59:2004–2016

    Article  PubMed  Google Scholar 

  34. Barends TRM, de Jong RM, van Straaten KE et al (2005) Escherichia coli MltA: MAD phasing and refinement of a tetartohedrally twinned protein crystal structure. Acta Crystallogr D Biol Crystallogr 61:613–621

    Article  PubMed  Google Scholar 

  35. de Ruyck J, Schubert HL, Janczak MW et al (2014) Tetartohedral twinning in IDI-2 from Thermus thermophilus: crystallization under anaerobic conditions. Acta Crystallogr F Struct Biol Commun 70:347–349

    Article  PubMed  PubMed Central  Google Scholar 

  36. Roversi P, Blanc E, Johnson S et al (2012) Tetartohedral twinning could happen to you too. Acta Crystallogr D Biol Crystallogr 68:418–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sliwiak J, Jaskolski M, Dauter Z et al (2014) Likelihood-based molecular-replacement solution for a highly pathological crystal with tetartohedral twinning and sevenfold translational noncrystallographic symmetry. Acta Crystallogr D Biol Crystallogr 70:471–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sliwiak J, Dauter Z, Kowiel M et al (2015) ANS complex of St John’s wort PR-10 protein with 28 copies in the asymmetric unit: a fiendish combination of pseudosymmetry with tetartohedral twinning. Acta Crystallogr D Biol Crystallogr 71:829–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu F, Song A, Xu C et al (2009) Determining the DUF55-domain structure of human thymocyte nuclear protein 1 from crystals partially twinned by tetartohedry. Acta Crystallogr D Biol Crystallogr 65:212–219

    Article  CAS  PubMed  Google Scholar 

  40. Gilski M, Drozdzal P, Kierzek R et al (2016) Atomic resolution structure of a chimeric DNA-RNA Z-type duplex in complex with Ba(2+) ions: a case of complicated multi-domain twinning. Acta Crystallogr D Biol Crystallogr 72:211–223

    Article  CAS  Google Scholar 

  41. Sultana A, Alexeev I, Kursula I et al (2007) Structure determination by multiwavelength anomalous diffraction of aclacinomycin oxidoreductase: indications of multidomain pseudomerohedral twinning. Acta Crystallogr D Biol Crystallogr 63:149–159

    Article  CAS  PubMed  Google Scholar 

  42. Jenni S, Ban N (2009) Imperfect pseudo-merohedral twinning in crystals of fungal fatty acid synthase. Acta Crystallogr D Biol Crystallogr 65:101–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Parsons S (2003) Introduction to twinning. Acta Crystallogr D Biol Crystallogr 59:1995–2003

    Article  PubMed  Google Scholar 

  44. Wilson AJC (1949) The probability distribution of X-ray intensities. Acta Crystallogr 2:318–321

    Article  Google Scholar 

  45. Rees DC (1980) The influence of twinning by merohedry on intensity statistics. Acta Crystallogr A 36:578–581

    Article  Google Scholar 

  46. Rees DC (1982) A general theory of X-ray intensity statistics for twins by merohedry. Acta Crystallogr A 38:201–207

    Article  Google Scholar 

  47. Yeates TO (1988) Simple statistics for intensity data from twinned specimens. Acta Crystallogr A 44:142–144

    Article  PubMed  Google Scholar 

  48. Padilla JE, Yeates TO (2003) A statistic for local intensity differences: robustness to anisotropy and pseudo-centering and utility for detecting twinning. Acta Crystallogr D Biol Crystallogr 59:1124–1130

    Article  PubMed  Google Scholar 

  49. Knott GJ, Panjikar S, Thorn A et al (2016) A crystallographic study of human NONO (p54nrb): overcoming pathological problems with purification, data collection and noncrystallographic symmetry. Acta Crystallogr D Struct Biol 72:761–769

    Article  CAS  PubMed  Google Scholar 

  50. Winn MD, Ballard CC, Cowtan KD et al (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Adams PD, Afonine PV, Bunkóczi G et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zwart PH, Grosse-Kunstleve RW, Adams PD (2005) Xtriage and Fest: automatic assessment of X-ray data and substructure structure factor estimation. CCP4 Newsl 43

    Google Scholar 

  53. Zwart PH, Grosse-Kunstleve RW, Lebedev AA et al (2008) Surprises and pitfalls arising from (pseudo)symmetry. Acta Crystallogr D Biol Crystallogr 64:99–107

    Article  CAS  PubMed  Google Scholar 

  54. McCoy AJ, Grosse-Kunstleve RW, Adams PD et al (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Redinbo MR, TO Y (1993) Structure determination of plastocyanin from a specimen with a hemihedral twinning fraction of one-half. Acta Crystallogr D Biol Crystallogr 49:375–380

    Article  CAS  PubMed  Google Scholar 

  56. Yang F, Forrer P, Dauter Z et al (2000) Novel fold and capsid-binding properties of the λ-phage display platform protein gpD. Nat Struct Mol Biol 7:230–237

    Article  CAS  Google Scholar 

  57. Yang F, Dauter Z, Wlodawer A (2000) Effects of crystal twinning on the ability to solve a macromolecular structure using multiwavelength anomalous diffraction. Acta Crystallogr D Biol Crystallogr 56:959–964

    Article  CAS  PubMed  Google Scholar 

  58. Britton D (1972) Estimation of twinning parameter for twins with exactly superimposed reciprocal lattices. Acta Crystallogr A 28:296–297

    Article  Google Scholar 

  59. Fisher RG, Sweet RM (1980) Treatment of diffraction data from crystals twinned by merohedry. Acta Crystallogr A 36:755–760

    Article  Google Scholar 

  60. Terwisscha van Scheltinga AC, Valegård K, Hajdu J et al (2003) MIR phasing using merohedrally twinned crystals. Acta Crystallogr D Biol Crystallogr 59:2017–2022

    Article  PubMed  Google Scholar 

  61. Hillig RC, Renault L (2006) Detecting and overcoming hemihedral twinning during the MIR structure determination of Rna1p. Acta Crystallogr D Biol Crystallogr 62:750–765

    Article  PubMed  Google Scholar 

  62. Rudolph MG, Kelker MS, Schneider TR et al (2003) Use of multiple anomalous dispersion to phase highly merohedrally twinned crystals of interleukin-1β. Acta Crystallogr D Biol Crystallogr 59:290–298

    Article  PubMed  Google Scholar 

  63. Afonine PV, Grosse-Kunstleve RW, Echols N et al (2012) Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr 68:352–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Murshudov GN, Skubák P, Lebedev AA et al (2011) REFMAC 5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67:355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem 71:3–8

    Article  PubMed  PubMed Central  Google Scholar 

  66. TO Y, Rees DC (1987) An isomorphous replacement method for phasing twinned structures. Acta Crystallogr A 43:30–36

    Article  Google Scholar 

  67. Brehm W, Diederichs K (2014) Breaking the indexing ambiguity in serial crystallography. Acta Crystallogr D Biol Crystallogr D70:101–109

    Article  Google Scholar 

  68. Guelker M, Stagg L, Wittung-Stafshede P et al (2009) Pseudosymmetry, high copy number and twinning complicate the structure determination of Desulfovibrio desulfuricans (ATCC 29577) flavodoxin. Acta Crystallogr D Biol Crystallogr D65:523–534

    Article  Google Scholar 

  69. Barends TRM, Dijkstra BW (2003) Acetobacter turbidans alpha-amino acid ester hydrolase: merohedral twinning in P21 obscured by pseudo-translational NCS. Acta Crystallogr D Biol Crystallogr 59:2237–2241

    Article  PubMed  Google Scholar 

  70. Lee S, Sawaya MR, Eisenberg D (2003) Structure of superoxide dismutase from Pyrobaculum aerophilum presents a challenging case in molecular replacement with multiple molecules, pseudo-symmetry and twinning. Acta Crystallogr D Biol Crystallogr 59:2191–2199

    Article  PubMed  Google Scholar 

  71. Thompson MC, Yeates TO (2014) A challenging interpretation of a hexagonally layered protein structure. Acta Crystallogr D Biol Crystallogr 70:203–208

    Article  CAS  PubMed  Google Scholar 

  72. Lea S, Stuart D (1995) Deconvolution of fully overlapped reflections from crystals of foot-and-mouth disease virus O1 G67. Acta Crystallogr D Biol Crystallogr 51:160–167

    Article  CAS  PubMed  Google Scholar 

  73. Lea S, Abu-Ghazaleh R, Blakemore W et al (1995) Structural comparison of two strains of foot-and-mouth disease virus subtype O1 and a laboratory antigenic variant, G67. Structure 3:571–580

    Article  CAS  PubMed  Google Scholar 

  74. Kotecha A, Seago J, Scott K et al (2015) Structure-based energetics of protein interfaces guides foot-and-mouth disease virus vaccine design. Nat Struct Mol Biol 22:788–794

    Article  CAS  PubMed  Google Scholar 

  75. Sabin C, Plevka P (2016) The use of noncrystallographic symmetry averaging to solve structures from data affected by perfect hemihedral twinning. Acta Crystallogr F Struct Biol Commun 72:188–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dornberger-Schiff K (1959) Relation of symmetry to structure in twinning. Acta Crystallogr 12:246

    Article  Google Scholar 

  77. Borshchevskiy V, Efremov R, Moiseeva E et al (2010) Overcoming merohedral twinning in crystals of bacteriorhodopsin grown in lipidic mesophase. Acta Crystallogr D Biol Crystallogr 66:26–32

    Article  CAS  PubMed  Google Scholar 

  78. Blow DM, Chayen NE, Lloyd LF et al (1994) Control of nucleation of protein crystals. Protein Sci 3:1638–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chayen NE, Saridakis E (2008) Protein crystallization: from purified protein to diffraction-quality crystal. Nat Methods 5:147–153

    Article  CAS  PubMed  Google Scholar 

  80. Sauter C, Ng JD, Lorber B et al (1999) Additives for the crystallization of proteins and nucleic acids. J Cryst Growth 196:365–376

    Article  CAS  Google Scholar 

  81. Efremov R, Moukhametzianov R, Büldt G et al (2004) Physical detwinning of hemihedrally twinned hexagonal crystals of bacteriorhodopsin. Biophys J 87:3608–3613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Velev OD, Pan YH, Kaler EW et al (2005) Molecular effects of anionic surfactants on lysozyme precipitation and crystallization. Cryst Growth Des 5:351–359

    Article  CAS  Google Scholar 

  83. Chapman HN, Fromme P, Barty A et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cohen AE, Soltis SM, González A et al (2014) Goniometer-based femtosecond crystallography with X-ray free electron lasers. Proc Natl Acad Sci U S A 111:17122–17127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hunter MS, Segelke B, Messerschmidt M et al (2014) Fixed-target protein serial microcrystallography with an x-ray free electron laser. Sci Rep 4:6026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sawaya MR (2007) Characterizing a crystal from an initial native dataset. Methods Mol Biol 364:95–120

    CAS  PubMed  Google Scholar 

  87. Thompson MC, Crowley CS, Kopstein J et al (2014) Structure of a bacterial microcompartment shell protein bound to a cobalamin cofactor. Acta Crystallogr F Struct Biol Commun 70:1584–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I thank Todd Yeates for sharing his expertise on these subjects over the years. Additionally, I thank Tanja Kortemme, Yao-Ming Huang, Peter Cimmermančič, and Andrej Sali for sharing crystal and diffraction images, and Benjamin Barad for assistance with preparing data for figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Thompson, M.C. (2017). Identifying and Overcoming Crystal Pathologies: Disorder and Twinning. In: Wlodawer, A., Dauter, Z., Jaskolski, M. (eds) Protein Crystallography. Methods in Molecular Biology, vol 1607. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7000-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7000-1_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6998-2

  • Online ISBN: 978-1-4939-7000-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics