Skip to main content

Assessment of Cell Viability with Single-, Dual-, and Multi-Staining Methods Using Image Cytometry

  • Protocol
  • First Online:
Cell Viability Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1601))

Abstract

The ability to accurately measure cell viability is important for any cell-based assay. Traditionally, viability measurements have been performed using the trypan blue exclusion method on a hemacytometer, which allows researchers to visually distinguish viable from nonviable cells. While the trypan blue method can work for cell lines or primary cells that have been rigorously purified, in more complex samples such as PBMCs, bone marrow, whole blood, or any sample with low viability, this method can lead to errors. In recent years, advances in optics and fluorescent dyes have led to the development of automated benchtop image-based cell counters for rapid cell concentration and viability measurement. In this work, we demonstrate the use of image-based cytometry for cell viability detection using single-, dual-, or multi-stain techniques. Single-staining methods using nucleic acid stains such as EB, PI, 7-AAD, DAPI, SYTOX Green, and SYTOX Red, and enzymatic stains such as CFDA and Calcein AM, were performed. Dual-staining methods using AO/PI, CFDA/PI, Calcein AM/PI, Hoechst/PI, Hoechst/DRAQ7, and DRAQ5/DAPI that enumerate viable and nonviable cells were also performed. Finally, Hoechst/Calcein AM/PI was used for a multi-staining method. Fluorescent viability staining allows exclusion of cellular debris and nonnucleated cells from analysis, which can eliminate the need to perform purification steps during sample preparation and improve efficiency. Image cytometers increase speed and throughput, capture images for visual confirmation of results, and can greatly simplify cell count and viability measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cook JA, Mitchell JB (1989) Viability measurements in mammalian cell systems. Anal Biochem 179:1–7

    Article  CAS  PubMed  Google Scholar 

  2. Oh H, Livingston R, Smith K et al (2004) Comparative study of the time dependency of cell death assays. MURJ 11:53–62

    Google Scholar 

  3. Chan LL, Zhong XM, Qiu J et al (2011) Cellometer vision as an alternative to flow cytometry for cell cycle analysis, mitochondrial potential, and immunophenotyping. Cytometry Part A 79A:507–517

    Article  Google Scholar 

  4. Chan LL, Wilkinson AR, Paradis BD et al (2012) Rapid image-based cytometry for comparison of fluorescent viability staining methods. J Fluoresc 22:1301–1311

    Article  CAS  PubMed  Google Scholar 

  5. Saldi S, Driscoll D, Kuksin D et al (2014) Image-based cytometric analysis of fluorescent viability and vitality staining methods for ale and lager fermentation yeast. J Am Soc Brew Chem 72:253–260

    CAS  Google Scholar 

  6. Han X, Liu Z, Mc J et al (2015) CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation. Sci Adv 1:1–8

    Google Scholar 

  7. Shah D, Naciri M, Clee P et al (2006) NucleoCounter—an efficient technique for the determination of cell number and viability in animal cell culture processes. Cytotechnology 51:39–44

    Article  PubMed  PubMed Central  Google Scholar 

  8. Al-Rubeai M, Welzenbach K, Lloyd DR et al (1997) A rapid method for evaluation of cell number and viability by flow cytometry. Cytotechnology 24:161–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Strober W (2001) Monitoring cell growth. In: Current protocols in immunology, vol APPENDIX 3A

    Google Scholar 

  10. Shapiro HM (2004) “Cellular Astronomy” - a foreseeable future in cytometry. Cytometry Part A 60A:115–124

    Article  Google Scholar 

  11. Stoddart M (2011) Cell viability assays: introduction. Methods Mol Biol 740:1–6

    Article  CAS  PubMed  Google Scholar 

  12. Davey HM, Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 60:641–696

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Michelson AD (1996) Flow cytometry: a clinical test of platelet function. Blood 87:4925–4936

    CAS  PubMed  Google Scholar 

  14. Tibbe AGJ, de Grooth BG, Greve J et al (2002) Imaging technique implemented in CellTracks system. Cytometry Part A 47:248–255

    Article  Google Scholar 

  15. Shapiro HM, Perlmutter NG (2006) Personal cytometers: slow flow or no flow? Cytometry Part A 69A:620–630

    Article  Google Scholar 

  16. Gerstner AOH, Mittag A, Laffers W et al (2006) Comparison of immunophenotyping by slide-based cytometry and by flow cytometry. J Immunol Methods 311:130–138

    Article  CAS  PubMed  Google Scholar 

  17. Mital J, Schwarz J, Taatjes DJ et al (2005) Laser scanning cytometer-based assays for measuring host cell attachment and invasion by the human pathogen Toxplasma gondii. Cytometry Part A 69A:13–19

    Article  Google Scholar 

  18. Hall A, Wu L-P, Parhamifar L et al (2015) Differential modulation of cellular bioenergetics by poly(l-lysine)s of different molecular weights. Biomacromolecules 16:2119–2126

    Article  CAS  PubMed  Google Scholar 

  19. Siqueira-Neto JL, Moon S, Jang J et al (2012) An image-based high-content screening assay for compounds targeting intracellular Leishmania donovani amastigotes in human macrophages. PLoS Negl Trop Dis 6:e1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zanella F, Lorens JB, Link W (2010) High content screening: seeing is believing. Trends Biotechnol 28:237–245

    Article  CAS  PubMed  Google Scholar 

  21. Schepers K, Pietras EM, Reynaud D et al (2013) Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13:285–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Szabo SE, Monroe SL, Fiorino S et al (2004) Evaluation of an automated instrument for viability and concentration measurements of cryopreserved hematopoietic cells. Lab Hematol 10:109–111

    Article  CAS  PubMed  Google Scholar 

  23. Macfarlane RG, Payne AM-M, Poole JCF et al (1959) An automatic apparatus for counting red blood cells. Br J Haemacytol 5:1–15

    Article  CAS  Google Scholar 

  24. Verso ML (1971) Some nineteenth-century pioneers of haematology. Med Hist 15:55–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Falzone N, Huyser C, Franken D (2010) Comparison between propidium iodide and 7-amino-actinomycin-D for viability assessment during flow cytometric analyses of the human sperm acrosome. Andrologia 42:20–26

    Article  CAS  PubMed  Google Scholar 

  26. Gordon KM, Duckett L, Daul B et al (2003) A simple method for detecting up to five immunofluorescent parameters together with DNA staining for cell cycle or viability on a benchtop flow cytometer. J Immunol Methods 275:113–121

    Article  CAS  PubMed  Google Scholar 

  27. Jarnagin JL, Luchsinger DW (1980) The use of fluorescein diacetate and ethidium bromide as a stain for evaluating viability of mycobacteria. Biotech Histochem 55:253–258

    CAS  Google Scholar 

  28. Roth B, Poot M, Yue S et al (1997) Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl Environ Microbiol 63:2421–2431

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wlodkowic D, Skommer J, Faley S et al (2009) Dynamic analysis of apoptosis using cyanine SYTO probes: from classical to microfluidic cytometry. Exp Cell Res 315:1706–1714

    Article  CAS  PubMed  Google Scholar 

  30. Bratosin D, Mitrofan L, Palii C et al (2005) Novel fluorescence assay using calcein-AM for the determination of human erythrocyte viability and aging. Cytometry Part A 66A:78–84

    Article  CAS  Google Scholar 

  31. Jones KH, Senft JA (1985) An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. J Histochem Cytochem 33:77–79

    Article  CAS  PubMed  Google Scholar 

  32. Donoghue AM, Garner DL, Donoghue DJ et al (1995) Viability assessment of Turkey sperm using fluorescent staining and flow cytometry. Poult Sci 74:1191–1200

    Article  CAS  PubMed  Google Scholar 

  33. Mascotti K, McCullough J, Burger SR (2000) HPC viability measurement: trypan blue versus acridine orange and propidium iodide. Transfusion 40:693–696

    Article  CAS  PubMed  Google Scholar 

  34. Cai K, Yang J, Guan M et al (2005) Single UV excitation of Hoechst 33342 and propidium iodide for viability assessment of rhesus monkey spermatozoa using flow cytometry. Arch Androl 51:371–383

    Article  CAS  PubMed  Google Scholar 

  35. Smith PJ, Wiltshire M, Davies S et al (1999) A novel cell permeant and far red-fluorescing DNA probe, DRAQ5, for blood cell discrimination by flow cytometry. J Immunol Methods 229:131–139

    Article  CAS  PubMed  Google Scholar 

  36. Akagi J, Kordon M, Zhao H et al (2013) Real-time cell viability assays using a new anthracycline derivative DRAQ7®. Cytometry Part A 83A:227–234

    Article  CAS  Google Scholar 

  37. Sutkeviciene N, Andersson MA, Zilinskas H et al (2005) Assessment of boar semen quality in relation to fertility with special reference to methanol stress. Theriogenology 63:739–747

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Li-Ying Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Chan, L.LY., McCulley, K.J., Kessel, S.L. (2017). Assessment of Cell Viability with Single-, Dual-, and Multi-Staining Methods Using Image Cytometry. In: Gilbert, D., Friedrich, O. (eds) Cell Viability Assays. Methods in Molecular Biology, vol 1601. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6960-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6960-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6959-3

  • Online ISBN: 978-1-4939-6960-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics