Skip to main content

Development of Recombinant Canarypox Viruses Expressing Immunogens

  • Protocol
  • First Online:
Recombinant Virus Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1581))

Abstract

Canarypox viruses (CNPV) are excellent candidates to develop recombinant vector vaccines due to both their capability to induce protective immune responses and their incompetence to replicate in mammalian cells (safety profile). In addition, CNPV and the derived recombinants can be manipulated under biosafety level 1 conditions. There is no commercially available system to obtain recombinant CNPV; however, the methodology and tools required to develop recombinant vaccinia virus (VV), prototype of the Poxviridae family, can be easily adapted. This chapter provides protocols for the generation, plaque isolation, molecular characterization, amplification and purification of recombinant CNPV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Poulet H, Minke J, Pardo MC et al (2007) Development and registration of recombinant veterinary vaccine. The example of the canarypox vector platform. Vaccine 25(30):5606–5612

    Article  CAS  PubMed  Google Scholar 

  2. Draper SJ, Heeney JL (2010) Viruses as vaccine vectors for infectious diseases and cancer. Nat Rev Microbiol 8(1):62–73

    Article  CAS  PubMed  Google Scholar 

  3. Weli SC, Tryland M (2011) Avipoxviruses: infection biology and their use as vaccine vectors. Virol J 8:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Staib C, Drexler I, Sutter G (2004) Construction and Isolation of Recombinant MVA. In: Isaacs SN (ed) Vaccinia virus and poxvirology methods and protocols, 1st edn. Humana, Totowa, NJ

    Google Scholar 

  5. Calamante G, Conte Grand MD, Carrillo EC (2010) Argentinian Patent AR052743B1

    Google Scholar 

  6. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edition. In: Inglis J, Boyle A, Gann A (eds) Expressing cloned genes for protein production, purification and analysis, chapter 19, vol 3. Cold Spring Harbor Laboratory Press, New York, pp 1602–1630

    Google Scholar 

  7. Boyle DB (1992) Quantitative assessment of poxvirus promoters in fowlpox and vaccinia virus recombinants. Virus Genes 6:281–290

    Article  CAS  PubMed  Google Scholar 

  8. Taylor J, Meignier B, Tartaglia J et al (1995) Biological and immunogenic properties of a canarypox-rabies recombinant, ALVAC-RG (vCP65) in non-avian species. Vaccine 13:539–549

    Article  CAS  PubMed  Google Scholar 

  9. Amano H, Morikawa S, Shimizu H et al (1999) Identification of the canarypoxvirus thymidine kinase gene and insertion of foreign genes. Virology 256:280–290

    Article  CAS  PubMed  Google Scholar 

  10. Zanetti FA, Conte Grand MD, Mitarotonda RC et al (2014) Canarypox virus expressing infectious bursal disease VP2 protein as immunogen for chickens. Braz J Microbiol 45:231–234

    Article  PubMed  PubMed Central  Google Scholar 

  11. Blasco R, Moss B (1995) Selection of recombinant vaccinia viruses on the basis of plaque formation. Gene 158:157–162

    Article  CAS  PubMed  Google Scholar 

  12. Coupar BE, Andrew ME, Both GW, Boyle DB (1986) Temporal regulation of influenza hemagglutinin expression in vaccinia virus recombinants and effects on the immune response. Eur J Immunol 16:1479–1487

    Article  CAS  PubMed  Google Scholar 

  13. Rosel J, Earl P, Weir J, Moss B (1986) Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the HindIII H genome fragment. J Virol 60:436–449

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tulman ER, Afonso CL, Lu Z et al (2004) The genome of canarypox virus. J Virol 78:353–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Calamante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Garanzini, D., Del Médico-Zajac, M.P., Calamante, G. (2017). Development of Recombinant Canarypox Viruses Expressing Immunogens. In: Ferran, M., Skuse, G. (eds) Recombinant Virus Vaccines. Methods in Molecular Biology, vol 1581. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6869-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6869-5_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6867-1

  • Online ISBN: 978-1-4939-6869-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics