Skip to main content

Rapid Construction of Multiplexed CRISPR-Cas9 Systems for Plant Genome Editing

  • Protocol
  • First Online:
Plant Pattern Recognition Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1578))

Abstract

Multiplex CRISPR-Cas9 nuclease mediated genome editing is an efficient method for disrupting gene function in plants. Use of CRISPR-Cas9 has escalated rapidly in recent years and is expected to become routine practice in molecular biology and related fields of research. Due to the relatively novel and widespread adoption of this technology, first-time users may not have regular access to experienced guidance or technical support from peers or mentors. Here, we offer guidance and technical support in the form of a detailed and tested protocol for simultaneous targeting of three separate loci on the TRANSPARENT TESTA 4 (TT4) gene in Arabidopsis thaliana using multiplex CRISPR-Cas9. Although we target multiple loci on a single gene in Arabidopsis, the same approach can be used to target multiple genes or alleles in other plant species as well. We recommend the use of a molecular toolkit to streamline the process and make recommendations for this type of approach. The protocol starts with an overview of the reagents and covers designing of gRNAs and assembly of components into a final T-DNA delivery molecule through Golden Gate cloning and Multisite Gateway LR recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. doi:10.1126/science.1225829

    Article  CAS  PubMed  Google Scholar 

  2. Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84

    Article  CAS  PubMed  Google Scholar 

  3. Baltes NJ, Voytas DF (2015) Enabling plant synthetic biology through genome engineering. Trends Biotechnol 33(2):120–131

    Article  CAS  PubMed  Google Scholar 

  4. Deltcheva E, Chylinski K, Sharma C, Gonzales K, Chao Y, Pirzada Z, Eckert M, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. doi:10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. doi:10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li J-F, Norville J, Aach J, McCormack M, Zhang D, Bush J, Chruch G, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188(4):773–782. doi:10.1534/genetics.111.131433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761. doi:10.1534/genetics.110.120717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weber J, Ollinger R, Mathias F (2015) CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proc Natl Acad Sci U S A 112(45):13982–13987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou H, Liu B, Weeks D, Spalding M, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res. doi:10.1093/nar/gku806

    Google Scholar 

  12. Ran A, Hsu P, Lin C-Y, Gootenberg J, Konermann S, Trevino A, Scott D, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lowder L, Zhang D, Baltes N, Paul J III, Tang X, Zheng X, Voytas D, Hsieh T-F, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985

    Article  PubMed  PubMed Central  Google Scholar 

  14. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133(2):462–469. doi:10.1104/pp.103.027979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Graham D, Root D (2015) Resources for the design of CRISPR gene editing experiments. Genome Biol 16:260

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shirley B, Kubasek W, Storz G, Bruggemann E, Koornneef M, Ausubel F, Goodman H (1995) Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J 8(5):659–671

    Article  CAS  PubMed  Google Scholar 

  17. Sun W, Meng X, Liang L, Jiang W, Huang Y, He J, Hu H, Almqvist J, Gao X, Wang L (2015) Molecular and biochemical analysis of chalcone synthase from Freesia hybrid in flavonoid biosynthetic pathway. PLoS One. doi:10.1371/journal.pone.0119054

    Google Scholar 

  18. Zhang F, Maeder M, Unger-Wallace E, Hoshaw J, Reyon D, Christian M, Li X, Pierick C, Dobbs D, Peterson T, Joung K, Voytas D (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zing finger nucleases. Proc Natl Acad Sci U S A 107(26):12028–12033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qi Y, Zhang Y, Zhang F, Baller J, Cleland S, Ryu Y, Starker C, Voytas D (2013) Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Res 23:547–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feng Z, Mao Y, Zhang B, Wei P, Yang D-L, Wang Z, Zhang Z, Zheng R, Yang L, Zeng L, Liu X, Zhu J-K (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci U S A 111(12):4632–4637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Doench J, Hartenian E, Graham D, Tothova Z, Hegde M, Smith I, Sullender M, Ebert B, Xavier R, Root D (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32:1262–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang T, Wei J, Sabatini D, Lander E (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80–84

    Article  CAS  PubMed  Google Scholar 

  23. Singh R, Kuscu C, Quinlan A, Qi Y, Adli M (2015) Cas9-chromatin binding information enables more accurate CRISPR off-target prediction. Nucleic Acids Res 43(18). doi:10.1093/nar/gkv575

  24. Tsai S, Zheng Z, Nguyen N, Liebers M, Topkar V, Thapar V, Wyvekens N, Khayter C, Iafrate J, Le L, Aryee M, Joung K (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33(2):187–197

    Article  CAS  PubMed  Google Scholar 

  25. Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771

    Article  CAS  PubMed  Google Scholar 

  26. De Wilde C, Van Houdt H, De Buck S, Angenon G, De Jaeger G (2000) Depicker A. Plants as bioreactors for protein production: avoiding the problem of transgene silencing 43:347–359

    CAS  Google Scholar 

  27. Nishimasu H, Ran A, Hsu P, Konermann S, Shehata S, Dohmae N, Ishitani R (2014) Crystal structure of Cas9. Cell 156:935–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by startup funds from East Carolina University and a Collaborative Funding Grant from North Carolina Biotechnology Center and Syngenta (2016-CFG-8003) to Y.Q.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lowder, L., Malzahn, A., Qi, Y. (2017). Rapid Construction of Multiplexed CRISPR-Cas9 Systems for Plant Genome Editing. In: Shan, L., He, P. (eds) Plant Pattern Recognition Receptors. Methods in Molecular Biology, vol 1578. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6859-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6859-6_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6858-9

  • Online ISBN: 978-1-4939-6859-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics