Skip to main content

Optical Microscopy and Spectroscopy for Epigenetic Modifications in Single Living Cells

  • Protocol
  • First Online:
Epigenetics and Gene Expression in Cancer, Inflammatory and Immune Diseases

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Optical imaging with high spatiotemporal resolution and analytical accuracy is becoming the mainstay of tools capable of deciphering molecular dynamics and activities in single living cells. Over the past decades, information obtained by optical imaging has greatly enriched and reshaped our knowledge of biology and medicine. Investigating epigenetic modifications by optical microscopy and spectroscopy is expected to be the wave of the future or might even become the norm to complement biomedical practice. Independent of classical genetic mechanisms, epigenetics has recently drawn substantial attention due to its extensive involvement in physiological and pathological processes, as well as its reversibility. In order to understand the real-time behaviors of epigenetic regulation, nanoscale inspection at the sub-second timescale is imperative. In this chapter we discuss the basics of state-of-the-art optical methods for life science research and their potential applications in imaging live-cell epigenetics. Moreover, with established experience in single-molecule detection, we provide practical guidance on how to choose and adapt optical instrumentations for different applications. Last, recent advancements and representative examples in sensing live-cell epigenetics are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cui Y, Irudayaraj J (2015) Inside single cells: quantitative analysis with advanced optics and nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:387–407

    Article  CAS  PubMed  Google Scholar 

  2. Magidson V, Khodjakov A (2013) Circumventing photodamage in live-cell microscopy. Method Cell Biol 114:545–560

    Article  Google Scholar 

  3. Huisken J, Stainier DYR (2009) Selective plane illumination microscopy techniques in developmental biology. Development 136:1963–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gomez D, Shankman LS, Nguyen AT, Owens GK (2013) Detection of histone modifications at specific gene loci in single cells in histological sections. Nat Methods 10:171–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miyanari Y, Ziegler-Birling C, Torres-Padilla ME (2013) Live visualization of chromatin dynamics with fluorescent TALEs. Nat Struct Mol Biol 20:1321–1324

    Article  CAS  PubMed  Google Scholar 

  6. Anton T, Bultmann S, Leonhardt H, Markaki Y (2014) Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system. Nucleus 5:163–172

    Article  PubMed  PubMed Central  Google Scholar 

  7. Magde D, Webb WW, Elson E (1972) Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705

    Article  CAS  Google Scholar 

  8. Chen Y, Muller JD, So PT, Gratton E (1999) The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J 77:553–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen J, Nag S, Vidi PA, Irudayaraj J (2011) Single molecule in vivo analysis of toll-like receptor 9 and CpG DNA interaction. Plos One 6, e17991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cui Y, Irudayaraj J (2015) Dissecting the behavior and function of MBD3 in DNA methylation homeostasis by single-molecule spectroscopy and microscopy. Nucleic Acids Res 43:3046–3055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yamagata K, Yamazaki T, Yamashita M, Hara Y, Ogonuki N, Ogura A (2005) Noninvasive visualization of molecular events in the mammalian zygote. Genesis 43:71–79

    Article  CAS  PubMed  Google Scholar 

  12. Yamazaki T, Yamagata K, Baba T (2007) Time-lapse and retrospective analysis of DNA methylation in mouse preimplantation embryos by live cell imaging. Dev Biol 304:409–419

    Article  CAS  PubMed  Google Scholar 

  13. Yamagata K (2008) Capturing epigenetic dynamics during pre-implantation development using live cell imaging. J Biochem 143:279–286

    Article  CAS  PubMed  Google Scholar 

  14. Cui Y, Cho IH, Chowdhury B, Irudayaraj J (2013) Real-time dynamics of methyl-CpG-binding domain protein 3 and its role in DNA demethylation by fluorescence correlation spectroscopy. Epigenetics 8:1089–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kapusta P, Machan R, Benda A, Hof M (2012) Fluorescence lifetime correlation spectroscopy (FLCS): concepts, applications and outlook. Int J Mol Sci 13:12890–12910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Frauer C, Rottach A, Meilinger D, Bultmann S, Fellinger K, Hasenoder S, Wang MX, Qin WH, Soding J, Spada F, Leonhardt H (2011) Different binding properties and function of CXXC zinc finger domains in Dnmt1 and Tet1. Plos One 6

    Google Scholar 

  17. Schneider K, Fuchs C, Dobay A, Rottach A, Qin W, Wolf P, Alvarez-Castro JM, Nalaskowski MM, Kremmer E, Schmid V, Leonhardt H, Schermelleh L (2013) Dissection of cell cycle-dependent dynamics of Dnmt1 by FRAP and diffusion-coupled modeling. Nucleic Acids Res 41:4860–4876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chowdhury B, McGovern A, Cui Y, Choudhury SR, Cho IH, Cooper B, Chevassut T, Lossie AC, Irudayaraj J (2015) The hypomethylating agent Decitabine causes a paradoxical increase in 5-hydroxymethylcytosine in human leukemia cells. Sci Rep 5:9281

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lin CW, Jao CY, Ting AY (2004) Genetically encoded fluorescent reporters of histone methylation in living cells. J Am Chem Soc 126:5982–5983

    Article  CAS  PubMed  Google Scholar 

  20. Lin CW, Ting AY (2004) A genetically encoded fluorescent reporter of histone phosphorylation in living cells. Angew Chem Int Ed Engl 43:2940–2943

    Article  CAS  PubMed  Google Scholar 

  21. Sasaki K, Ito T, Nishino N, Khochbin S, Yoshida M (2009) Real-time imaging of histone H4 hyperacetylation in living cells. Proc Natl Acad Sci U S A 106:16257–16262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ito T, Umehara T, Sasaki K, Nakamura Y, Nishino N, Terada T, Shirouzu M, Padmanabhan B, Yokoyama S, Ito A, Yoshida M (2011) Real-time imaging of histone H4K12-specific acetylation determines the modes of action of histone deacetylase and bromodomain inhibitors. Chem Biol 18:495–507

    Article  CAS  PubMed  Google Scholar 

  23. Sasaki K, Ito A, Yoshida M (2012) Development of live-cell imaging probes for monitoring histone modifications. Bioorg Med Chem 20:1887–1892

    Article  CAS  PubMed  Google Scholar 

  24. Erickson HP (2009) Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proced Online 11:32–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hayashi-Takanaka Y, Yamagata K, Nozaki N, Kimura H (2009) Visualizing histone modifications in living cells: spatiotemporal dynamics of H3 phosphorylation during interphase. J Cell Biol 187:781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johansen KM, Johansen J (2006) Regulation of chromatin structure by histone H3S10 phosphorylation. Chromosome Res 14:393–404

    Article  CAS  PubMed  Google Scholar 

  27. Hayashi-Takanaka Y, Yamagata K, Wakayama T, Stasevich TJ, Kainuma T, Tsurimoto T, Tachibana M, Shinkai Y, Kurumizaka H, Nozaki N, Kimura H (2011) Tracking epigenetic histone modifications in single cells using Fab-based live endogenous modification labeling. Nucleic Acids Res 39:6475–6488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sato Y, Mukai M, Ueda J, Muraki M, Stasevich TJ, Horikoshi N, Kujirai T, Kita H, Kimura T, Hira S, Okada Y, Hayashi-Takanaka Y, Obuse C, Kurumizaka H, Kawahara A, Yamagata K, Nozaki N, Kimura H (2013) Genetically encoded system to track histone modification in vivo. Sci Rep 3:2436

    PubMed  PubMed Central  Google Scholar 

  29. Lleres D, James J, Swift S, Norman DG, Lamond AI (2009) Quantitative analysis of chromatin compaction in living cells using FLIM-FRET. J Cell Biol 187:481–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Recamier V, Izeddin I, Bosanac L, Dahan M, Proux F, Darzacq X (2014) Single cell correlation fractal dimension of chromatin A framework to interpret 3D single molecule super-resolution. Nucleus 5:75–84

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hu YS, Zhu Q, Elkins K, Tse K, Li Y, Fitzpatrick JA, Verma IM, Cang H (2013) Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells. Opt Nanoscopy 2:7

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu J, Vidi PA, Lelievre SA, Irudayaraj JM (2015) Nanoscale histone localization in live cells reveals reduced chromatin mobility in response to DNA damage. J Cell Sci 128:599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hihara S, Pack CG, Kaizu K, Tani T, Hanafusa T, Nozaki T, Takemoto S, Yoshimi T, Yokota H, Imamoto N, Sako Y, Kinjo M, Takahashi K, Nagai T, Maeshima K (2012) Local nucleosome dynamics facilitate chromatin accessibility in living mammalian cells. Cell Rep 2:1645–1656

    Article  CAS  PubMed  Google Scholar 

  34. Nozaki T, Kaizu K, Pack CG, Tamura S, Tani T, Hihara S, Nagai T, Takahashi K, Maeshima K (2013) Flexible and dynamic nucleosome fiber in living mammalian cells. Nucleus 4:349–356

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge funding from the W.M. Keck Foundation, National Science Foundation (#1249315), and Purdue Center for Cancer Research Core grant NIH-NCI P30CA023168.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Irudayaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Cui, Y., Irudayaraj, J. (2017). Optical Microscopy and Spectroscopy for Epigenetic Modifications in Single Living Cells. In: Stefanska, B., MacEwan, D. (eds) Epigenetics and Gene Expression in Cancer, Inflammatory and Immune Diseases. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6743-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6743-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6741-4

  • Online ISBN: 978-1-4939-6743-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics